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Abstract

We present the main properties of the class of elementary totally discon-
nected locally compact (tdlc) groups, recently introduced by Wesolek, along
with a decomposition result by the same author which shows that these groups
along with topologically characteristically simple groups may be seen as build-
ing blocks of totally disconnected locally compact groups.

The class E of elementary tdlc (totally disconnected locally compact) Polish1

groups was recently introduced by Wesolek in [Wes15] and is defined below.

Definition A. The class E of elementary groups is the smallest class of tdlc
Polish groups such that

(E1) E contains all Polish groups which are either profinite or discrete;

(E2) whenever N 6 G is a closed normal subgroup of a tdlc Polish group G, if
N ∈ E and G/N is profinite or discrete then G ∈ E ;

(E3) if a Polish tdlc group G can be written as a countable increasing union of open
subgroups belonging to E , then G ∈ E .

Much like in the case of amenable elementary groups, the class of elementary
groups enjoys strong closure properties: it is closed under group extension, taking
closed subgroups, Hausdorff quotients, and inverse limits.

Examples of elementary groups include solvable tdlc Polish groups. It is not
known whether every tdlc Polish amenable group is an elementary group. A wealth
of non-elementary groups is provided by compactly generated, topologically simple,
non-discrete groups. As a consequence, for all n > 3, neither the group of automor-
phisms of the n-regular tree nor the special linear group of dimension n over Qp are
elementary.

The most remarkable feature of elementary groups is that they (along with topo-
logically characteristically simple non-elementary groups) may be seen as building
blocks for general tdlc Polish groups. To be more precise, using results of Caprace
and Monod [CM11], Wesolek proved the following structure theorem.

1Or equivalently second-countable, see Sec. 1.
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Theorem B ([Wes15, Thm. 1.6]). Let G be a compactly generated tdlc Polish
group. Then there exists a finite increasing sequence

H0 = {e} 6 · · · 6 Hn

of closed characteristic subgroups of G such that

1. G/Hn is an elementary group and

2. for all i = 0, . . . , n− 1, the group (Hi+1/Hi)/RadE(Hi+1/Hi) is a finite quasi-
product2 of topologically characteristically simple non-elementary subgroups,
where RadE(H) denotes the elementary radical3 of H.

Our main goal here is to present the proof of the above result in details, which
requires us to study the aforementioned closure properties of the class of elementary
groups closely. To prove these closure properties, Wesolek makes heavy use of the
ordinal-valued construction rank, which is basically a tool for using induction on
elementary groups. Here, we try to avoid the construction rank as much as possible
so as to make the proofs simpler and to highlight where this rank is really needed.
In particular, we prove the following results directly.

• Every topogically simple compactly generated elementary group is discrete
(Prop. 2.6).

• E is closed under extension (Prop. 3.1).

• E is closed under taking closed subgroups (Prop. 3.2).

However, in order to prove that the class of elementary groups is closed under
taking Hausdorff quotients, we could not avoid the use of ordinals. We thus took the
opportunity to give a gentle introduction to ordinals and define the construction rank
in Section 4. Moreover, we use this construction rank only once, so as to get a general
scheme for proving results by induction on elementary groups (Thm. 4.11). It is
worth noting here that Wesolek defines a second rank on elementary groups, called
the decomposition rank, which turns out to be more useful for studying elementary
groups once their closure properties have been established (see [Wes15, Sec. 4.3]).
We will not need to use it here and so we will not define it.

With this induction scheme in hand, we then prove the technical Lemma 5.4
which has the following two consequences.

• Every Hausdorff quotient of an elementary group is elementary (Thm. 5.5) .

• If N1, ..., Nk are elementary closed normal subgroups of a tdlc group G, then
N1 · · ·Nk is elementary (Cor. 5.7).

The latter result is fundamental, since it allows us to define the elementary
radical of a tdlc Polish group G as the biggest closed normal elementary subgroup

2For the definition of quasi-products, see Def. 6.3.
3The elementary radical is the greatest elementary closed normal subgroup; see Thm. 6.1.
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of G (Thm. 6.1). This radical is then used along with a fundamental result of
Caprace and Monod to prove Theorem B in Section 6.

Section 1 contains some basic definitions and gives an introduction to Cayley-
Abels graphs. In Section 2, we prove several propositions which lead to easy ex-
amples and non-examples of tdlc Polish groups. Sections 3 and 5 cover closure
properties of E , with a discussion of ordinals and some background on the construc-
tion rank contained in Section 4. In Section 6, we discuss the elementary radical
and prove the decomposition theorem for tdlc Polish groups.

1 Prerequisites
A topological group is Polish if it is separable and its topology admits a compatible
complete metric. Polish groups should be regarded as nice groups: the completeness
of a compatible metric allows for Baire category arguments, while the separability
allows for constructive arguments. Polish locally compact groups are characterized
as follows.

Theorem 1.1 (see [Kec95, Thm. 5.3]). For a locally compact group G, the following
are equivalent.

(i) G is Polish.

(ii) G is second-countable.

(iii) The topology of G is metrizable.

For general topological groups, being Polish is the strongest of the three prop-
erties above, so the totally disconnected locally compact groups satisfying these
conditions will be called tdlc Polish groups.

We will also need Cayley-Abels graphs, and we first recall a lemma which gives
an easy way of understanding them (see [Wes15, Prop. 2.4]).

Lemma 1.2 (Folklore). Let G be a compactly generated tdlc Polish group, and let U
be a compact open subgroup of G. Then there exists a finite symmetric4 set A ⊆ G
such that AU = UAU and

G = 〈A〉U.
Moreover, if D is a dense subgroup of G, one can choose A as a subset of D.

Proof. Let S be a compact symmetric generating set of G, and let D be a dense
subgroup of G. Then {xU : x ∈ D} is an open cover of S, so we may find a
finite symmetric subset B ⊆ D such that S ⊆ BU . Now, UB is also compact, and
UBU ∩D is dense in UBU , which contains UB. So we may find a finite symmetric
subset A of UBU ∩D such that UB ⊆ AU , and we may assume that A contains B.
Now, since A ⊆ UBU and U is a group, we actually have

UAU = UBU ⊆ AUU = AU,

and we conclude by induction that for all n > 1, (UAU)n = AnU . Since S is
symmetric and S ⊆ BU ⊆ UAU we deduce that G = 〈A〉U .

4A subset A of G is symmetric if A−1 = A.
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Now, given a compact open subgroup U of a tdlc Polish group G and a finite
symmetric set A ⊆ G such that G = 〈A〉U and UAU = AU , the Cayley-Abels
graph CA,U(G) is defined the following way:

• its set of vertices is G/U and

• its set of edges is {(gU, gaU) : a ∈ A, g ∈ G}.

Then the left action of G on G/U extends to a continuous transitive action of G
on CA,U(G) by graph automorphisms. In particular, all the vertices in CA,U(G) have
the same degree, and will call that fixed number the degree of CA,U(G). The fact
that UAU = AU ensures that the set of neighbors of U is exactly the set of aU for
a ∈ A. But A is finite, so the degree of the Cayley-Abels graph CA,U(G) is finite.

Suppose in addition that N is a closed normal subgroup of G, and let π : G →
G/N be the natural projection. Then G/N = 〈π(A)〉π(U) and π(U)π(A)π(U) =
π(A)π(U), so we may form the Cayley-Abels graph Cπ(A),π(U)(G/N).

Observe that Cπ(A),π(U)(G/N) is just the quotient of CA,U(G) by the action of
N by graph automorphisms, hence its degree is smaller or equal to the degree of
CA,U(G). Moreover, by definition of the quotient graph, if two distinct neighbors of
a vertex v ∈ CA,U(G) are in the same N -orbit, then the degree of Cπ(A),π(U)(G/N) is
strictly smaller than the degree of CA,U(G). This observation will be crucial to the
proof of the decomposition theorem (see Lem. 6.6).

2 Examples and non-examples
Since it is central, we recall here the definition of the class of elementary groups.

Definition 2.1. The class E of elementary groups is the smallest class of tdlc Polish
groups satisfying the following properties.

(E1) The class E contains all Polish groups which are either profinite or discrete5.

(E2) Whenever N 6 G is a closed normal subgroup of a tdlc Polish group G, if
N ∈ E and G/N is profinite or discrete6 then G ∈ E .

(E3) If a Polish tdlc group G can be written as a countable increasing union of open
subgroups belonging to E , then G ∈ E .

By definition, a topological group is SIN7 if it admits a basis of open neighbor-
hoods of the identity, each of which is invariant under conjugacy. Note that this
condition is automatically satisfied in an abelian topological group. Now, if G is a
tdlc Polish SIN group, then by van Dantzig’s theorem we may find a compact open
subgroup K 6 G. The SIN condition ensures that the intersection U of the conju-
gates of K is still open. Then G/U must be a discrete group, so G is elementary by
(E2). We have proved the following proposition.

5A profinite group is Polish if and only if it is metrizable, while a discrete group is Polish if and
only if it is countable.

6Since G/N is automatically Polish (see [Gao09, Thm. 2.2.10]), we see that equivalently, one
could ask that G/N is profinite metrizable, or countable discrete.

7SIN stands for “small invariant neighborhoods”.

4



Proposition 2.2. Every SIN tdlc Polish group is elementary. In particular, any
abelian tdlc Polish group is elementary.

As we will see in the next section (Prop. 3.1), the class of elementary groups is
closed under extension, which yields that every solvable tdlc Polish group is elemen-
tary by the previous proposition.

Question 2.3 (Wesolek). Is every amenable8 tdlc Polish group elementary?

Remark. Since amenability passes to closed subgroups and to quotients, the ques-
tion may be reformulated by first defining the class of “amenable elementary groups”
to be the smallest class containing profinite amenable groups and discrete amenable
groups, stable under extension and exhaustive open unions. The question then
becomes: is every amenable tdlc Polish group amenable elementary?

A tdlc Polish group is residually discrete if for every finite subset F ⊆ G\{1},
there is an open normal subgroup disjoint from F . It is residually elementary if
for every finite subset F ⊆ G \ {1}, there is a closed normal subgroup N , disjoint
from F , such that G/N is elementary.

Proposition 2.4. Every residually discrete tdlc Polish group is elementary.

Proof. Every tdlc Polish group can be written as an increasing union of compactly
generated open subgroups (see Lem. 5.1). Moreover, being residually discrete passes
to open subgroups, so by (E3) we only have to prove the proposition in the case
when G is compactly generated. It is a theorem of Caprace and Monod that every
locally compact, compactly generated, residually discrete group is SIN [CM11, Cor.
4.1], so we can conclude that G is elementary by Proposition 2.2.

In fact, adapting the proof of Caprace and Monod’s aforementioned result,
Wesolek was able to show the following remarkable result, which we state without
proof.

Theorem 2.5 (see [Wes15, Thm. 3.14]). Every residually elementary group is el-
ementary. In particular, any tdlc Polish group which can be written as the inverse
limit of elementary groups is elementary.

Note that the above result fails completely for the class of elementarily amenable
discrete groups, since free groups are residually finite.

Let us now turn to non-examples of elementary groups. The following fact is
closely related to Lemma 4.10, but as a warm-up to the next section we give here a
detailed “ordinal-free” proof.

Proposition 2.6. Every topologically simple compactly generated elementary group
has to be discrete.

Remark. As a consequence, the existence of a topologically simple compactly gen-
erated amenable nondiscrete tdlc Polish group9 would provide a negative answer to
Question 2.3.

8A good reference on amenability for locally compact groups is Appendix G in [BdlHV08].
9In other words, we seek a non-discrete analogue of the derived groups of topological full groups

of minimal subshifts (these are finitely generated infinite amenable simple groups, see [Mat06,
JM13]).
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Proof of Proposition 2.6. LetG be a topologically simple compactly generated nondis-
crete group, and let F be the class of elementary groups which are not isomorphic
to G. We want to show that F contains the class E of elementary groups, and so it
suffices to check that F satisfies the same defining properties as E (see Def. 2.1) in
order to conclude that E ⊆ F by minimality.

Because G is neither discrete nor profinite10, F contains profinite and discrete
groups, so (E1) is satisfied. The class F satisfies (E2) because G is topologically
simple. Suppose that (E3) is not satisfied. Then we can write G =

⋃
i∈NGi, where

(Gi)i∈N is an increasing chain of open subgroups of G and every Gi belongs to F ,
hence is different from G. Let S be a compact generating set for G. Then (Gi)i∈N is
an open cover of S, so by compactness and the fact that (Gi)i∈N is increasing, there
exists i ∈ N such that Gi contains S. But then Gi = G, which is a contradiction.
So (E3) is also satisfied by F , which ends the proof.

Let us now apply Proposition 2.6 and give some non-examples of elementary
groups.

Proposition 2.7. Let n > 3. Neither the group Aut+(Tn) generated by the vertex
stabilizers in the automorphism group of the n-regular tree, nor the projective linear
group PSln(Qp) are elementary.

Proof. By Proposition 2.6, it suffices to show that these are topologically simple
nondiscrete compactly generated groups. It is well-known that both groups are
simple: for Aut+(Tn) this is a result of Tits [Tit70], while for PSln(Qp) a proof may
be found in [Die71, Ch. II, §2]. That these groups are not discrete is clear. Aut+(Tn)
acts properly and cocompactly on the tree Tn, and PSln(Qp) acts properly and
cocompactly on its Bruhat-Tits building, and hence both are compactly generated
(a more direct proof for PSln(Qp) may be found in [dlHdC]).

Remark. Since Aut+(Tn) is an index 2 subgroup of Aut(Tn), we deduce from the
above proposition and Corollary 3.3 that Aut(Tn) is non-elementary as well. And
since every Hausdorff quotient of an elementary group is elementary, the special
linear group Sln(Qp) is also non-elementary.

3 Closure properties
Let us first present and prove some of the closure properties of the class of elementary
groups which do not require the use of ordinals.

Proposition 3.1. E is closed under extension: whenever G is a tdlc Polish group,
and H / G is a closed normal subgroup such that both H and G/H are elementary,
then G is elementary.

Proof. Fix an elementary group H, and consider the class FH of tdlc Polish groups
Q such that whenever G is a tdlc Polish group with Q = G/H, then G is elementary.
By property (E2), FH contains all profinite Polish groups and discrete Polish groups,
so we have to show that FH has the other two defining properties of E .

10A non-discrete profinite group cannot be topologically simple!
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• Suppose N ∈ FH is a closed normal subgroup of some tdlc Polish group Q,
and that Q/N is a profinite or discrete group. Moreover, suppose that G is
a tdlc Polish group such that Q = G/H. We want to show that G ∈ E , and
thus that Q ∈ FH . To this aim we let π : G → Q denote the quotient map,
then π−1(N) is a closed normal subgroup of H, and π−1(N)/H = N . Because
N ∈ FH , the group π−1(N) is elementary. But G/π−1(N) = Q/N is profinite
or discrete Polish, so G is elementary.

• Suppose Q = G/H is written as a countable increasing union of open sub-
groups Oi belonging to FH . Then π−1(Oi) belongs to E because Oi ∈ FH . We
deduce that G =

⋃
i π
−1(Oi) is elementary.

Proposition 3.2. Let G be an elementary group. If H is a tdlc Polish group such
that there exists a continuous injective homomorphism π : H → G, then H is
elementary. In particular, any closed subgroup of an elementary group is elementary.

Proof. Let F be the class of elementary groups G such that if H is a tdlc Polish
group with a continuous injective homomorphism π : H → G, then H is elementary.

First, F clearly contains discrete Polish groups. Let us show that it contains
profinite Polish groups. Suppose G is profinite, and π : H → G is continuous and
injective. Then H is residually discrete, hence it is elementary by Proposition 2.4.

Next, suppose that G is a tdlc Polish group, and N ∈ F is a closed normal
subgroup of G such that G/N is profinite or discrete. Let π : H → G be a con-
tinuous injective morphism. Then π induces a continuous injective homomorphism
π̃ : H/π−1(N) → G/N . Because F contains discrete and profinite groups, we de-
duce that H/π−1(N) is elementary. But π−1(N) injects continuously into N , which
belongs to F , hence π−1(N) is elementary. We deduce from Proposition 3.1 that H
is elementary.

Finally, suppose that G is a countable increasing union of open subgroups Oi

which belong to F . We must show that G also belongs to F . Let π : H → G be a
continuous injective homomorphism. Then the restriction of π to π−1(Oi) is also a
continuous injective homomorphism, so the open subgroups π−1(Oi) are elementary
and thus H =

⋃
i∈N π

−1(Oi) is elementary.

Corollary 3.3. Let G be a tdlc Polish group, and let H 6 G be a closed subgroup
of finite index. Then G is elementary if and only if H is elementary.

Proof. First, if G is elementary then H is elementary by the previous proposition.
Conversely, if H is elementary, let N be the kernel of the action of G on G/H by
left translation. The set G/H is finite, so N has finite index in G. Moreover, N is a
closed subgroup of H, hence is elementary by the previous proposition. The group
G/N is finite, so by property (E2) of the class of elementary groups, G also has to
be elementary.

The next closure property will require the use of an inductive argument based on
the construction rank, which we now introduce in detail. The reader who is allergic
to ordinals may just take Theorem 4.11 for granted and move directly to Section 5.
However, he or she might also try to cure this allergy by reading what follows.
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4 The construction rank on elementary groups
In order to motivate this section, let us digress a bit and discuss an easy example of
a rank which may already be familiar. Suppose we have a finitely generated group Γ
and a fixed finite symmetric generating set S containing the identity element. Then
we can reconstruct every element of Γ as follows: start with Γ0 = S, and then define
by induction Γn+1 = ΓnS. Because Γ is generated by S, which is symmetric and
contains the identity element, we have that Γ =

⋃
n∈N Γn. The rank of an element

γ ∈ Γ is then defined to be the smallest n ∈ N such that γ ∈ Γn. Of course, the rank
of γ ∈ Γ is just dS(γ, e) + 1 where dS is the word metric defined by S. It measures
how hard it is to construct γ using S and the group multiplication.

Now, let us try to define a rank on elementary groups the same way: we know that
the class of elementary groups is generated by profinite and discrete Polish groups,
so we let E0 be the class of Polish groups which are either profinite or discrete. For
a Polish tdlc group G and n ∈ N, we then say that G ∈ En+1 if either

• there exists N ∈ En such that G/N is either profinite or discrete, or

• there exists a countable increasing family (Gi)i∈N of open subgroups of G such
that for all i ∈ N, we have Gi ∈ En, and moreover G =

⋃
i∈NGi.

The problem is that, as opposed to the group case where every element is a product
of finitely many elements of S, here the second operation needs countably many
elementary groups in order to build a new one. Thus, there is no reason to have⋃
n∈N En = E , and indeed one can show that the inclusion

⋃
n∈N En ⊆ E is strict

[Wes15, Sec. 6.2]. So we need a rank taking values in something bigger than the
integers: in particular, we want a rank which takes values into something “stable
under countable supremums”, and that is exactly what the set of countable ordinals
will do for us.

4.1 The well-ordered set of countable ordinals

We will proceed with a crash course on (countable) ordinals. But first, let us define
the fundamental property of the set into which a rank takes values, allowing for
inductive arguments.

A strictly ordered set (A,<) is well-ordered if every nonempty subset of A has
a minimum. Note that every subset of A is a well-ordered set for the induced order.

Example 4.1. The set of rational numbers with the usual order (Q, <) is not
well-ordered. The set (N2, <lex), where <lex denotes the lexicographic order, is well-
ordered.

Given a well-ordered set A and a property P (x), to prove that P (x) is true for
all x ∈ A, one may use a proof by induction. Such a proof boils down to showing
that the following holds:

(∗) For all x ∈ A, if P (y) is true for all y < x, then P (x) is true.
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Let us see why (∗) implies that P (x) is true for all x ∈ A. Consider the set B =
{x ∈ A : P (x) is not true}. If B were nonempty, then it would have a minimum x1,
and by definition, for all y < x1, P (y) would be true. But because x1 ∈ B, this is a
contradiction.

Remark. Let x0 be the minimum of A. Then the assertion “P (y) is true for all
y < x0” is necessarily verified, so if we want to show that (∗) holds, we will have to
show that P (x0) is true.

Example 4.2. For the well-ordered set N of non-negative integers, we recover what
is sometimes called the “principle of generalized recurrence”.

The following proposition should be regarded by the non-set theory inclined as
an axiom. Its refinements form the foundations of the theory of ordinals, a nice
exposition of which can be found in [Kri71].

Proposition 4.3. There exists a unique (up to order isomorphism) uncountable
well-ordered set (ω1, <) such that for all α ∈ ω1, the well-ordered set

{β ∈ ω1 : β < α}

is countable. Moreover, ω1 is stable under countable supremums, meaning that every
countable family (αi)i∈N of elements of ω1 has a smallest upper bound in ω1, denoted
by sup{αi : i ∈ N}.

We will call ω1 the set of countable ordinals. It will allow us to define a rank
on elementary groups, and this rank will be useful to prove some of the permanence
properties of this class of groups by induction.

Every countable ordinal α ∈ ω is the strict supremum11 of the set {β ∈ ω1 : β <
α} of its predecessors . In this way, every element of ω1 can actually be thought of
as a well-ordered set. Moreover, for every countable well-ordered set C, there exists
a unique α ∈ ω1 such that C is order-isomorphic to the set of predecessors of α.

So the elements of ω1 are precisely the isomorphism classes of countable well-
orders. In particular, ω1 contains the isomorphism class of the set of integers N
with its usual order, which is denoted by ω. Identifying every n ∈ N with its set of
predecessors n := {0, ..., n − 1} equipped with the induced order, we see that the
set of predecessors of ω in ω1 is {n : n ∈ N}.

4.2 The construction rank

Now that we have our well-ordered set (ω1, <) of countable ordinals at hand, let
us see how to define functions by induction on ω1. In general, one builds functions
by induction on a well-ordered set (A,<) the same way one proves assertions by
induction: if we suppose that f(y) is defined for all y < x, we have to prescribe a
way of building f(x). When A is the set of integers, this is the usual construction
by induction of a function f , and we often only need to know f(n) in order to define

11The strict supremum of a subset A ⊆ B of an ordered set (B, <) is, if it exists, the smallest
x ∈ B such that x > y for all y ∈ A.
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f(n + 1). For ω1, the situation is complicated by the fact that not every element
is of the form α + 1. Let us make sense of this last sentence and do a tiny bit of
ordinal arithmetic.

Given a countable ordinal α ∈ ω1, the nonempty set {β ∈ ω1 : β > α} has a
minimum, which we denote by α+ 1. The reader may check that, when seeing α+ 1
as a well-ordered set, it is obtained by adding to the well-ordered set α an element
+∞ bigger than every element in α. Moreover, such a notation is consistent with
the addition on N.

Elements of the form α + 1 are called successors. But not every element is a
successor: for instance ω is not a successor.

Proposition 4.4. A countable ordinal α ∈ ω1 is not a successor if and only if it is
the supremum of its set of predecessors: α = supβ<α β.

Proof. Suppose that α ∈ ω1 is a successor, and write α = β+1. Then the supremum
of the set of predecessors of α is equal to β, hence it is not equal to α.

Conversely, if α ∈ ω1 is not a successor, recall that α is the strict supremum of
its set of predecessors. So the supremum of the set of predecessors of α has to be
either α or a predecessor β of α. Let us see why the latter case cannot happen. If
the supremum of the set of predecessors of α were some β < α, because α is not a
successor, we would have α 6= β + 1. Then α > β + 1 > β, contradicting the fact
that β was the supremum of the set of predecessors of α.

Definition 4.5. A non-zero countable ordinal α ∈ ω1 which is not a successor is
called a limit.

Let us now go back to our initial problem and define by induction the class of
elementary groups. Here our function f will map a countable ordinal α to a class of
tdlc Polish groups Eα.

Definition 4.6. Let E0 be the class of Polish groups which are either profinite or
discrete. Then, if α ∈ ω1 is given and Eβ is defined for all β < α, define Eα as follows.

• If α = β + 1 is a successor, we then say that G ∈ Eβ+1 if either

– there exists N ∈ Eβ such that G/N is either profinite or discrete, or

– there exists a countable increasing family (Gi)i∈N of open subgroups of G
such that for all i ∈ N, we have Gi ∈ Eβ, and moreover G =

⋃
i∈NGi.

• If α = supβ<α β is a limit, we let Eα =
⋃
β<α Eβ.

Note that by construction, for all β < α we have Eβ ⊆ Eα. Let us check that we
have exhausted the class E of elementary groups. The proof is easy, but we give full
details for the reader who is unacquainted with ordinals.

Proposition 4.7. We have E =
⋃
α∈ω1
Eα.

Proof. First, let us prove by induction that for all α < ω1, we have Eα ⊆ E . So let
α ∈ ω1, and suppose that for all β < α, Eβ ⊆ E .

10



• If α = 0, because E0 is the class of profinite or discrete Polish groups, it is
contained in E .

• If α = β+1 is a successor, by construction of Eβ+1 and the stability properties
of E , the assumption that Eβ ⊆ E implies that Eβ+1 ⊆ E .

• If α = supβ<α β is a limit, we have Eα =
⋃
β<α Eβ ⊆ E .

This concludes our proof by induction, so we have
⋃
α∈ω1
Eα ⊆ E . By minimality

of the class E , we now only have to check that the class F :=
⋃
α∈ω1
Eα shares the

defining properties of E in order to conclude that E = F (see Def. A).

• The class F =
⋃
α∈ω1
Eα contains E0, which is the class of profinite or discrete

Polish groups.

• Let G be a tdlc Polish group, suppose that N ∈ F is a closed normal subgroup
of G is such that G/N is profinite or discrete Polish. Then, let α ∈ ω1 such
that N ∈ F . By definition of Eα+1, we have G ∈ Eα+1 ⊆ F .

• Suppose that G is written as a countable increasing union of open subgroups
(Gi)i∈N belonging to F , and for all i ∈ N, pick αi ∈ ω1 such that Gi ∈
Eαi

. Using Proposition 4.3, we may define α = supi∈N αi ∈ ω1, and again by
definition of Eα+1, we have G ∈ Eα+1 ⊆ F .

Definition 4.8. Let G be an elementary group. Its construction rank is the
smallest ordinal α ∈ ω1 such that G ∈ Eα.

Since whenever α is a limit ordinal we have Eα =
⋃
β<α Eβ, the rank of an

elementary group is always a successor ordinal, except when it is equal to zero.

4.3 Using the construction rank

Proposition 4.9. Let G be an elementary group, and let H 6 G be an open sub-
group. Then H is elementary and the rank of H is smaller or equal to the rank of
G.

Proof. The proof is by induction on the construction rank, which is either null or a
successor ordinal.

• The statement is clearly true for rank 0 elementary groups (recall that these
are the Polish groups which are either profinite or discrete).

• Suppose G has rank α+1 and that the proposition is true for every elementary
group of rank at most α. Let H be an open subgroup of G. We have two
subcases to consider.

– Either G has a closed normal subgroup N of rank at most α such that
G/N is profinite or discrete. Then N ∩ H is a closed normal subgroup
of H. But N ∩ H is also an open subgroup of N , so by our induction
hypothesis it has rank at most α. Since H/N ∩H is topologically isomor-
phic to the open subgroup HN/N 6 G/N , we deduce that H has rank
at most α + 1, which is smaller or equal to the rank of G.
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– Or G may be written as an increasing union of open subgroups (Gi)i∈N
of rank at most α. Then for all i ∈ N, Gi ∩H is an open subgroup of Gi,
so by our induction hypothesis it has rank at most α. Again, we deduce
that H has rank at most α + 1, hence smaller or equal to the rank of
G.

The theorem that ends this section is the only place in this survey where we need
the construction rank. Let us first present one useful lemma on elementary groups
from which the result will follow easily.

Lemma 4.10. Let G be a compactly generated elementary group of rank α+1. Then
G has a closed normal subgroup N of rank α such that G/N is profinite or discrete.

Proof. Because G has rank α+1, by definition either G has a closed normal subgroup
N of rank α such that G/N is profinite or discrete, or G can be written as an
increasing union of open subgroups (Gi)i∈N of rank at most α. We want to show
that the latter case is contradictory. Let S be a compact generating set of G. Then
(Gi)i∈N is an open cover of S. Because (Gi)i∈N is increasing and S is compact, there
exists i ∈ N such that Gi contains S. But then Gi = G, which contradicts the fact
that Gi has rank at most α.

Theorem 4.11. Let P (G) be a property. Then to show that P (G) is true for every
elementary group G, it suffices to show that:

(i) P (G) is true whenever G is a Polish group which is either profinite or discrete;

(ii) if G is an elementary group and N is a closed normal subgroup of G such that
P (N) is true and G/N is profinite or discrete, then P (G) is true;

(iii) if G is an elementary group, then there exists an increasing chain (Gi)i∈N of
open compactly generated subgroups of G such that the implication

(∀i ∈ N, P (Gi))⇒ P (G)

holds.

Proof. The proof is by induction on the construction rank, which is either zero or a
successor ordinal.

• By assumption (i), P (G) is true for every rank 0 elementary group.

• Suppose that G has rank α + 1 and that P (H) is true for all H of rank at
most α. By asumption (iii), we may fix an increasing chain (Gi)i∈N of open
compactly generated subgroups of G such that the implication

(∀i ∈ N, P (Gi))⇒ P (G)

holds. Let i ∈ N. By Proposition 4.9, the group Gi has rank at most α + 1.
The previous lemma provides a closed normal subgroup Ni of Gi which has
rank at most α, and such that Gi/Ni is profinite or discrete. By our induction
hypothesis, we have that P (Ni) is true, and by asumption (ii), this implies
that P (Gi) is true. So P (Gi) is true for all i ∈ N, and by asumption (iii) we
conclude that P (G) is true.
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5 More permanence properties
The main goal of this section is to show that every Hausdorff quotient of an ele-
mentary group is elementary (Thm. 5.5). Along the way, we will also prove some
results needed for the decomposition theorem (Thm. B).

The following lemma echoes item (iii) in the previous theorem.

Lemma 5.1. Let G be a tdlc Polish group. Then there exists an increasing sequence
(Gi)i∈N of open compactly generated subgroups of G such that G =

⋃
i∈NGi. More-

over, if K is a compact group acting continuously on G by automorphisms, one can
choose the Gi so that each of them is setwise fixed by K.

Proof. Let U be an open compact subgroup of G, and let (gi)i∈N enumerate a count-
able dense family of elements of G. For every i ∈ N, we let Si = U ∪ {g0, ..., gi}.
Then K · Si is compact and open, and we let Gi be the group generated by K · Si.
Clearly the sequence (Gi)i∈N is increasing, and each Gi is compactly generated. The
sequence (Gi)i∈N is also exhaustive by density of (gi) and the fact that U is an
open subgroup of G. Furthermore, the fact that K acts by automorphisms on G
guarantees that each Gi is setwise fixed by K.

Definition 5.2. A tdlc group G is called quasi-discrete if it has a dense subgroup
whose elements have an open centralizer.

Caprace and Monod have shown that every compactly generated quasi-discrete
group is SIN [CM11, Prop. 4.3]. The following lemma is very close to their result.

Lemma 5.3. Let G be a quasi-discrete tdlc Polish group. Then G is elementary.

Proof. Let U be a compact open subgroup of G, let (gi)i∈N be a countable dense
set such that for all i ∈ N, the centralizer of gi is open. For all n ∈ N, let Vn / U
be an open subgroup such that every element of Vi commutes with g1, ..., gn. Then
Vn is a compact open normal subgroup of Gn = 〈U, g1, ..., gn〉. Because it has such
a compact open normal subgroup, Gn is an elementary open subgroup of G, hence
G =

⋃
n∈NGn is elementary.

We now need a technical lemma which will be superseded later by Corollary 5.6.

Lemma 5.4. Let G be a tdlc Polish group, and let M,L be two closed normal
subgroups of G intersecting trivially. If M is elementary, then ML/L also is.

Proof. This is done using the inductive scheme provided by Theorem 4.11, where
the property P (M) we want to prove is “whenever M arises as a closed normal
subgroup of some tdlc Polish group G, and L is another closed normal subgroup of
G intersecting M trivially, then ML/L is elementary”. To make the proof lighter,
we won’t make any reference to the ambient group G.

Note that the fact that M ∩ L is trivial implies [M,L] = {e}. So the conjugacy
of L on M is trivial, in particular L normalizes any subgroup of M .

(i) First suppose thatM is profinite. ThenML is closed, soML/L is a continuous
quotient of M , hence elementary. Next, if M is discrete, each element of M
has an open centralizer in ML, and so we may apply Lemma 5.3 to ML/L
and deduce that ML/L is elementary.
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(ii) Suppose that there exists a closed normal subgroup N of M such that P (N)
holds and M/N is either profinite or discrete. Then NL/L is elementary,
moreover it is a closed normal subgroup of ML/L, so because the class of
elementary groups is stable under group extension (Proposition 3.1), we only
need to show that

(ML/L)/(NL/L) 'ML/NL

is elementary. But M/N is profinite or discrete, so by case (i) applied to
M ′ = M/N and L′ = NL/N , we have that M ′L′/L′ is elementary. By the
isomorphism theorem, the latter is isomorphic to ML/NL, which is thus ele-
mentary.

(iii) Let K be a compact open subgroup of PL. Then K acts continuously on M
by conjugation, so Lemma 5.1 provides an exhaustive increasing chain (Mi)i∈N
of open compactly generated subgroups of M such that each Mi is normalized
by K. Suppose that P (Mi) is true for every i ∈ N, and fix i ∈ N. Because
P (Mi) holds, the group MiL/L is elementary. Recall that K normalizes Mi,
so K normalizes MiL. Because (KMiL/L)/(MiL/L) is a quotient of K, hence
profinite, we deduce that KMiL/L is elementary.

Now, ML/L = KML/L arises as the increasing union of the elementary open
subgroups KMiL/L, hence it is elementary.

Theorem 5.5. Let G be an elementary tdlc Polish group, and let N be a closed
normal subgroup of G. Then G/N is elementary.

Proof. Consider the smallest class F of elementary tdlc Polish groups G such that
for all closed N /G, the group G/N is elementary. We will show that F satisfies the
same properties as the class of elementary groups, hence coincides with it. First, F
clearly contains profinite and discrete groups.

Then, let G be an elementary group and assume that M ∈ F is a normal
subgroup of G such that G/M is either profinite or discrete. Let N be a normal
subgroup in G, consider the group G̃ = G/M∩N . Then if we let M̃ = M/M∩N and
Ñ = N/M ∩N , the groups M̃ and Ñ are closed normal subgroups of G̃ intersecting
trivially. Moreover, since M ∈ F the group M̃ is elementary. Thus, we may apply
Lemma 5.4 to them and deduce that M̃Ñ/Ñ is elementary. But then, MN/N

is isomorphic to M̃Ñ/Ñ , hence elementary. Since (G/M)/(MN/N) is isomorphic
to the group G/MN which is a quotient of the profinite or discrete group G/N ,
we deduce that (G/N)/(MN/N) is elementary. But elementariness is stable under
extensions (Prop. 3.1), so G/N is elementary.

In order to conclude the proof, we need to deal with increasing unions: let G be
an elementary group, written as an increasing union G =

⋃
i∈NGi of open subgroups

belonging to F . Let N be a closed normal subgroup in G. Then for all i ∈ N, N ∩Gi

is a closed normal subgroup of Gi, hence Gi/(N ∩Gi) is elementary, but now G/N
may be written as an increasing union of the projections of the Gi’s onto G/N .
Moreover, each projection of Gi onto is isomorphic to Gi/(N ∩ Gi), so G/N is an
increasing union of open elementary subgroups, hence elementary.
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Corollary 5.6. Let G be a tdlc Polish group, letM,L be two closed normal subgroups
of G. If M is elementary, then ML/L also is.

Proof. Consider as in the proof of Theorem 5.5 the quotient group G̃ = G/(M ∩L),
inside which M̃ := M/(M ∩ L) and L̃ := L/(M ∩ L) are closed, normal and have
trivial intersection. By Theorem 5.5 the group M̃ is elementary, so we may apply
Lemma 5.4 and deduce that M̃L̃/L̃ is elementary. But the latter is isomorphic to
ML/L, which concludes the proof.

Corollary 5.7. Let G be a tdlc Polish group, and let L,M be two elementary closed
normal subgroups of G. Then ML is elementary.

Proof. By the previous corollary, ML/L is elementary. But because L is elementary
and the class of elementary groups is stable under extension (Prop. 3.1), the group
LM is also elementary.

Here is the last permanence property that we will need in order to prove the
decomposition theorem. Actually, we only need it for the much easier case where
all the Ci’s are normalized by some fixed open subgroup of G.

Theorem 5.8. Let G be a Polish tdlc group. Suppose that there exists an increas-
ing sequence of elementary subgroups (Ci)i∈N of G such that each Ci has an open
normalizer in G, and that G =

⋃
i∈NCi. Then G is elementary.

Proof. By Lemma 5.1, we can write G as an increasing countable union of open com-
pactly generated subgroups. Since these subgroups will satisfy the same assumption
as G, and since an increasing union of open elementary subgroups is elementary, we
only have to show that the theorem holds for G compactly generated.

So assume that G is compactly generated and fix a compact open subgroup U
of G. By Lemma 1.2 applied to the dense subgroup D =

⋃
i∈NCi, there exists i ∈ N

and a finite subset A ⊆ Ci such that G = 〈A〉U . Let V be an open subgroup of
U that normalizes Ci, and let B be the compact reunion of the V -conjugates of A.
Then 〈B〉 is normalized by V , and it it is a closed subgroup of Ci, hence elementary
by Proposition 3.2. Because 〈B〉V/〈B〉 is a quotient of V , hence profinite, we deduce
that 〈B〉V is elementary. But V has finite index in U and B contains A, so 〈B〉V
has finite index in G = 〈A〉U . Having an elementary closed subgroup of finite index,
G has to be elementary by Corollary 3.3.

6 The decomposition theorem
We are now almost ready to understand how a compactly generated tdlc Polish
groups can be decomposed into elementary and topologically characteristically sim-
ple non-elementary pieces. The main tool for doing this is the existence, inside any
tdlc Polish group, of a maximum elementary closed normal subgroup.

Theorem 6.1 ([Wes15, Thm 1.5]). Let G be a tdlc Polish group. Then the family
of closed elementary normal subgroups of G has a unique maximum with respect to
inclusion.
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This maximum is called the elementary radical of G, and denoted by RadE(G).
Note that it is a topologically characteristic subgroup of G, meaning that every
continuous automorphism of G fixes RadE(G) setwise.12

Moreover, by Proposition 3.1, the quotient G/RadE(G) must have trivial ele-
mentary radical.

Proof of Theorem 6.1. Let (Un)n∈N be a countable basis of open subsets of G. Let
F be the set of n ∈ N such that there exists a closed elementary normal subgroup
intersecting Un. For each n ∈ F , choose such a closed elementary normal subgroup
Nn intersecting Un. Enumerate13 F = {nk : k ∈ N}, and let

N =
⋃
k∈N

Nn1 · · ·Nnk
.

By Corollary 5.7, each Nn1 · · ·Nnk
is elementary, so by Theorem 5.8, N is an elemen-

tary closed normal subgroup of G. By definition, N intersects every basic open set
Un which intersects some elementary closed normal subgroup. So every Un that does
not intersect N must intersect no elementary closed normal subgroup. But because
N is closed, its complement may be written as a reunion of such Un’s. This implies
that N is the unique maximum of the class of closed elementary normal subgroups
of G.

The second tool was developed by Caprace and Monod, and provides a way to de-
compose the Polish tdlc compactly generated groups which have a trivial elementary
radical.

Definition 6.2. A tdlc Polish group G is locally elliptic if every finite subset of
G generates a group with compact closure.

A result of Platonov asserts that every locally elliptic tdlc Polish group is an
increasing union of open compact subgroups, so that in particular it is elementary
(see [Wes15, Sec. 2.4]).

Definition 6.3. Let G be a tdlc Polish group. One says that G is the quasi-
product of the closed normal subgroups N1, ..., Nk 6 G if the product map N1 ×
· · · ×Nk → G which maps (n1, ..., nk) to n1 · · ·nk is injective and has dense image.

Theorem 6.4 (Caprace-Monod, [CM11, Thm. B]14). Let G be a compactly gener-
ated tdlc group. Then one of the following holds:

(1) G has an infinite discrete normal subgroup;

(2) G has a non-trivial locally elliptic closed normal subgroup;

(3) G has exactly 0 < n <∞ minimal non-trivial closed normal subgroups.
12 Continuous automorphisms of G are also homeomorphisms, since G is Polish.
13If F is finite, we allow for repetitions in the enumeration.
14As noted by Wesolek, the result in this paper contains a mistake, so we give here the corrected

version.
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Corollary 6.5 (Wesolek). Let G be a non-trivial compactly generated tdlc Polish
group with trivial elementary radical. Then G contains a topologically characteristic
closed subgroup which decomposes as a quasi-product of 0 < n <∞ non-elementary
closed normal subgroups.

Proof. We apply the previous theorem to G. Because G has a trivial elementary
radical, cases (1) and (2) cannot hold, so we deduce that G has exactly 0 < n <∞
minimal closed normal subgroups N1, ..., Nn. Let H = N1 · · ·Nn. The subgroup H
is topologically characteristic for its definition is clearly invariant under continuous
group automorphisms.

Observe that the Ni’s pairwise commute since for all i 6= j, [Ni, Nj] is contained
in Ni ∩Nj, which is trivial by minimality.

We now prove that for all 1 6 m < n, N1 · · ·Nm∩Nm+1 is trivial. Indeed, if it is
not trivial, it must contain Nm+1 by minimality. But Nm+1 commutes with every Ni

for i 6 m, so in particular N1 · · ·Nm has a non-trivial center C. Now such a center
C is a closed characteristic subgroup of N1 · · ·Nm, hence C is a non-trivial abelian
closed normal subgroup of G. Since abelian tdlc Polish groups are elementary, this
contradicts the fact that G has a trivial elementary radical.

So for all 1 6 m < n, the groups N1 · · ·Nm and Nm+1 intersect trivially, which
easily yields by induction that the product map N1 × · · · ×Nn → H is injective. In
other words, H = N1 · · ·Nn is the quasi-product we seek.

The next lemma is where Cayley-Abels graphs show up (see Lem. 1.2 and the
paragraph thereafter for a reminder about these).

Lemma 6.6. Let G be a nontrivial tdlc Polish group with trivial elementary radical,
and let N be a non-trivial closed normal subgroup of G. Denote by π : G → G/N
the natural projection. Let U be a compact open subgroup of G, and A be a finite
subset of G such that G = 〈A〉U . Then the Cayley-Abels graph CA,U(G) has a degree
strictly greater than the degree of Cπ(A),π(U)(G/N).

Proof. First, the action on the Cayley-Abels graph CA,U(G) has compact kernel, so
since G has trivial elementary radical, this action must be faithful. Now consider
the action of N on CA,U(G). Because G has trivial elementary radical, N is non-
discrete, hence there exists g ∈ N ∩U \ {1}. Such a g fixes the vertex v := U . Now,
since the N -action is faithful, there exists another vertex w ∈ CA,U(G) which is not
fixed by g. In particular, because CA,U(G) is connected, the boundary15 of the set of
g-fixed vertices has to be nonempty, implying that there exists a vertex in CA,U(G)
with two distinct neighbors belonging to the same N -orbit. As observed at the end
of section 1, this yields that the degree of Cπ(A),π(U)(G/N) is strictly less than the
degree of CA,U(G).

Now the path to a decomposition theorem is clear. If G is a compactly generated
tdlc Polish group, we apply the following algorithm to it until we get a Cayley-Abels
graph of degree 0, that is, a compact (hence elementary) group:

15The boundary of a set F of vertices is the set of vertices not belonging to F , but connected to
an element of F.
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(A) quotientG by its elementary radical to obtain a groupG′ with trivial elementary
radical. If G = G′ then stop. If G 6= G′, then

(B) quotient G′ by the non-trivial quasi-product provided by Corollary 6.5, obtain-
ing a new group H. If H is not compact, proceed to step (A), replacing G by
H.

Indeed, the previous lemma guarantees that the degree of the associated Cayley-
Abels graphs drops by at least one each time we apply both steps (in particular,
the length of the characteristic series obtained by running this algorithm is bounded
above by the minimal degree of the Cayley-Abels graphs of G). By lifting the
obtained quasi-products back to G, we obtain a proof of the following theorem, also
known as Theorem B.

Theorem 6.7. Let G be a compactly generated tdlc Polish group. Then there exists
a finite increasing sequence

H0 = {e} 6 · · · 6 Hn

of closed characteristic subgroups of G such that

1. G/Hn is an elementary group, and

2. For all i = 0, ..., n− 1, the group (Hi+1/Hi)/RadE(Hi+1/Hi) is a finite quasi-
product of topologically characteristically simple non-elementary subgroups.
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