Introduction to Kakutani equivalence
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November 8, 2023

These notes aim to introduce the notion of Kakutani equivalence, its generalization
to Z%-actions and a classification theory.

(X, A, u) will always denote a standard Borel probability space and Aut(X, A, u)
the set of bimeasurable probability measure preserving maps 7: X — X (two such
maps being identified if they coincide on a measurable set of full measure).

Every T € Aut(X, A, ) gives a Z-action via (n,x) — T"z. Later on we will more
generally consider p.m.p. group actions T: G — (X, A, i), more precisely for G = Z.
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1 Induced map, Kakutani tower

The transformations will always be invertible as the proofs are easier and we will con-
sider more generally group actions later on. However the notions and properties in this
section are valid for non invertible transformations.



1.1 Induced map

Let T e Aut(X, A, 1) and A € A of positive measure. The return time rp4: A —
N* U {0} is defined by :

Vo e A, rra(z) i=inf{k > 1| TFz e A},
also written r4 if the context is clear.

Theorem 1.1 (Poincaré recurrence theorem). If u(A) > 0, then for almost every x € A,
the set {k € N* | T*x € A} is infinite.

When T is ergodic, Theorem [I.1] is true for almost every z in X. Indeed by this
theorem it suffices to show that almost every orbit visits A, i.e. to show that ], ., T™(A)
is of full measure, but this set is T-invariant and of positive measure since it contains
A, then the result follows.

Proof of Theorem[1.1l For every n € N u {00}, we define
E,:={reAl|lsup{k=0|TFze A} = n}.

For every finite n, we have T"(E,) = Ey so E, has the same measure as Fy, but this
measure is necessary zero since A is the disjoint union of the E,, for n € N u {oo} and
 is finite. Thus A is equal to F, up to a null set. O

Then we can define a transformation 7’4 on the set of x given by Poincaré recurrence
theorem, i.e. on A up to a null set, called the induced tranformation on A :

Tux = T"4@) g,

T is an element of Aut(A, A4, pa), where By is the set of elements of B included in A
and g4 = p(.)/u(A) is the conditionnal probability measure. Indeed every subset B of
A is the disjoint union of the B,, := B n {ra = n} and T4(B,) = T™(B) by definition,
then the equality pa(Ta(B)) = pa(B) follows from the T-invariance of p.

A consequence of the next lemma is that r4 is p4-integrable.
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Theorem 1.2 (Kac’s theorem).

A AMA\M(A)

with equality when T is ergodic.

Proof of Theorem[1.3. X contains the disjoint union | ;.o Uy<per 7" ({74 = k}) (with
equality up to a null set when 7' is ergodic). Considering the measure of both sets, this
gives the desired formula. O]

In this proof, we considered the subsets T"({r4 = k}) for 0 < n < k. When one
wants to recover T' from T4 and r 4, the goal is exactly to artificially build these subsets
(see the next part about Kakutani tower).

Moreover ergodicity is preserved by induction.

Proposition 1.3. If T is ergodic, then so is Ty.

Proof of Proposition[1.3 Consider a Ts-invariant subset B of A and B' := |, .y T™(B)
which is also |,y Up<n<r 7" ({z € B | ra(z) = k}). Both equivalent definitions imply
that B’ is T-invariant and B’ n A is equal to B. Then by the ergodicity of T', u(B’) is
zero or one, and p4(B) too. O

For x € A, Tyx is obtained by mapping 74(z) times the transformation 7" on z.
Then, to recover T from T4 and 74, we have to create r4(z) virtual steps between x
and T4x. In order to do so, A will be enlarged, setting a second argument which will be
incremented by the new transformation before applying T4 to the point of A. This is
called a Kakutani tower of height r4 built over A. The definition of this transformation
is given in the next part.

1.2 Kakutani tower

Let S e Aut(Y,B,v) and h: Y — N* be an integrable function. We define a new space
Yhi={(y,1) [y e Y,0 <i < h(y)},

it is the disjoint union of the .
Vo= {h = j} x {i}

for 0 < i < j. If b’ < h, then Y" is included in Y". Moreover the subset ¥ x {0} of
Y is exactly Y7 (ie Y with &’ = 1), it is a copy of Y. Notice that Y} is a copy of the

subset {h = j} of Y via the bijection f/: y € {h = j} — (y,i) € Y7, then Y" is endowed
with a natural o-algebra B" and a natural probability measure v/".

e B" is the product o-algebra of Y x N restricted to Y. In particular, for all
measurable set B included in {h = j}, B x {i} is a measurable set in Y" for every

0<i<j,and (B")y: = {B x {0} | Be B}.



e " is within a renormalization constant the product measure v ® dy restricted to

B", where 6y is the counting measure on N. Intuitively " behaves on each Yij
as v does on {h = j}, meaning that for every measurable set B included in Y;j ,
vM(B) := Axv((f/)"1(B)) where ) is a renormalization constant. Such a constant
exists, i.e. " is a finite measure, since h is integrable (see the computation of A
at the end of this part).

Now the transformation S* acting on Y is defined by :

he oo | (yi4+1) ifi+1<h(y)
Sy 1) “{ (S0.0) . i1 hly)

It is an element of Aut(Y" B v"). (Y" S") is called a tower of height h over Y.

{h =5} {h =4} {h =23} {h=2} {h=1}
: S
XS3x //—\ v
..... WX N
] XSz
S

{h =5} x {4}
X(S3x,3) /
{h =5} x {3} (o3¢
....... 5" {h =4} x {J
!
X(8%z,2) " o
(h=5) x {2} R T
....... 5" {h=4} {2¢
>‘<<S3I, 1) sh {h =2} x {1}
{h =5} x {1} @< =3t {1
5" (h=4)x {J (521»1)>A<
>‘<(S3m, 0) " h 2} x {s}h ,
""" {h =5} x {0} o)< =31 x {0}
{h =4} x {0} (Szm,O)>A<

Proposition 1.4. If S is ergodic, then so is S".

Proof of Proposition[1.J) Consider a S"-invariant subset B of Y" and B’ := B n Y.
B’ is S-invariant and B is the union of the (S")*(B’) for n € Z. Then B is trivial by
ergodicity of S. [



Coming back to the notion of induced maps, it is not difficult to see that towers are
the inverse operation, in the sense that

e when T is ergodid] (A", (T4)™) is isomorphic to (X, T) (here it is a tower with
Y =A v =rpsand h =rs: A — N* which is of pa-integral 1/u(A) by Kac’s
theorem);

e rgny1 = h and (Y, (S")y1) is isomorphic to (Y, 9).

It is interesting to compute the value of \.

1= Y ) =2 Y u({h:j}>=A2ju<{h:j}>=AJ hdv.

0<i<j 0<i<j 0<j Y

Then A is the inverse of the integral of h and it is also the v-measure of Y since
v(Y)=1.

Then notice that the less is the measure of the induction subset A < X, the greater
will be the integral of the height function defined on A to recover (X,T"). Conversely,
the greater is the integral of the height function ~: Y — N*, the less will be the measure
of the induction subset Y of Y to recover (Y, S).

1.3 Properties of induced maps and towers

Proposition 1.5 (behaviour with conjugacy). Let S € Aut(Y,B,v) and ¢ a measure
isomorphism from (X, A, ) to (Y, B,v).

1. For every A c X,
(9718 = ¢ Sy

2. For every integrable function h: X — N*,
(¢ Sp)t = 715"y
with ¥: (x,i) € X" — (p(x),i) e YH,

Remark 1.6. The first statement of the last proposition tells us, in some
sense, that after inducing two isomorphic transformations on the "same" set,
the isomorphism remains true between the induced maps. Indeed, consider a
conjugation ¢: X — Y between T' € (X, A, p) and S € (Y,B,v), and A < X.
Then

Te = (¢ 'S9)c = ¢ ' Suc)p

Inducing one transformation on C' < X is equivalent to inducing the other on
the corresponding subset ¢(C') of Y given by the conjugation .

It is the same idea for the second statement : a tower of height h for T is
like a tower of height ho¢™! (the corresponding height defined on Y, given by
the conjugation ¢) for S.

'Without ergodicity, one only recovers the system (X', T: X' — X’') with X' =
Lli=0 Ldo<ner T"({ra = k}) (see the proof of Theorem [1.2).
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Proof of Proposition[1.5. 1. For x € A, we have

To-tspa(®) = min{n>0|¢p 'S p(z) e A}
= min{n > 0] S"p(z) € p(A)}
= Tsp0a)(0(2)).

Then
(P71 Sp)ax = (9 ' Sp) e tseal® g = 1SS P (1) = LS4y (p(2)).

2. Let v e X. If 0 < i < h(z) — 2, then (¢~1Sp)"(x,i) = (x,i + 1). Moreover we
have 0 < i < ho o ' (p(z)) — 2, so "¢ (p(x),i) = (p(z),i + 1), this gives

S p(w,0) = P ()i + 1) = (2,0 + 1).

If i = h(z) — 1, then (¢ 1Sp)"(x,i) = (¢~ 1Sp(x),0). Moreover we have i =
ho g ! (p(x)) =1, 50 5" (p(x),i) = (Sp(x),0), this gives

YIS (2, 1) = v (Sp(x),0) = (97 Sp(),0).
Il

Proposition 1.7 (smaller and smaller induction subsets, greater and greater height
functions). Let T' € Aut(X, A, u).

1. If Ay c Ay < X, then (Ta,)a, = Ta, and

rra(@) = ) rra(Th, ().

0<i<TTA2 A (z)

2. If hy,ha: X — N* are two integrable functions and hy < hy on X, then T"? =

(T")9 with
L 1 ZfZ<h1(SL’) o
o= { ha(a) = (@) + 1 if i = In(a)

Moreover

J hgd,u
f gdpM = =X ——
Xh1

f hld,u
X

2Th2 and (T™)9 are not defined on the same spaces but (X"2, u"2) and ((X")9, (u"1)9) are iso-
morphic in a very natural fashion, meaning that the subset {(h1,hs) = (i,5)} x {k} of X"2 can be
naturally assimilate to an explicit subset of (X"1)9, which is ({(h1, ho) = (i,)} x {k}) x {0} if k <i—1,
({(h1,he) = (i,5)} x {i—1}) x {k—i+ 1} if i <k < j— 1 (see Figure[L.3)), then we abusively consider
that the spaces are the same.




/I {(ﬁl,hz)‘!(3,4)} x {2}
[. : )T@
\‘\ {(ﬁl7h2)‘!(3,4)} x {1}
\\\ :I )Thz
SR S
+ [

{(hi7h2) = (3,4)}§>< {0}

hi—1

X x {0}

Figure 1: Drawing for Proposition [I.7{2]
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T’"TA,‘Q_A] (z)-1
T A A T
T Ay (l’) i 2

Figure 2: Drawing for Proposition 1]

Proof of Proposition[1.7. We only give a proof for the integral of g, see Figures[[.3] and
for the other statements. We can compute the value of the integral using the defini-
tion of g. We can also find it without computation, using the equality 772 = (T"1)9. In-
deed p2(X') =1/ hodp, but it is also equal to (u")9((X")") = p" (X1)/ §n, gdp™
and " (X) is equal to 1/, hidp. O

Proposition states that if A; < Ay, then T4, is the induced map of T4, on an
explicit subset of Ay (which is Ay). The next proposition states that if we only know
p(Ay) < pu(As), then Ty, is isomorphic to the induced map of T4, on a subset of A
with the same measure as A;.

There are the same ideas for towers. If we only know that {hidp < §hodu (not
necessarily h; < hy), then T"? is isomorphic (not necessarily equal) to a tower of T™
and we know the integral of the height function, so that we know how much (X", T")
is enlarged to obtain (X"2, T"?) up to conjugacy.

From now the transformations are assumed to be ergodic.

Proposition 1.8. Let T € Aut(X, A, 1) be an ergodic transformation. The following
assertions hold true.

1. If Ay and As are subsets of X and 0 < p(Ay) < u(As), then Ta, is isomorphic to
Ty, for some subset A| < Ay with the same measure as A;.

2. If hy, ho: X — N* are two integrable functions and § hydp < §y hodp, then T"
is isomorphic to (T™)9 for some integrable function g: X™ — N* satisfying

f hgd,u
_ JX

f gdu™ = :
Xh J hld,u
X



Proof of Proposition[1.8 We first prove the equivalence between the assertions and
then that the second one is true.

Assume the first point. Let hj, he as in the second point. 7" is isomorphic to
(T"*2) ¢h,. We can show that p"*2(X") = (h;dp/§ (ki + he)du. Indeed we have
Thitha = (Th1)9 for some g by Proposition and X" < XM+ has the same measure
as (X™)!' < (X")9 and this is the inverse of §gdu which is known by Proposition
[l Then we have

/J,h1+h2 (Xhl) < /~Lh1+h2 (th)’

this implies that there exists A = X" with the same p"*"2-measure as X" and such
that (T™*h2) ., is isomorphic to (T™%"2), which is equal to ((T7"1%2)yn,)4. Then
T" is isomorphic to (77?) 4. Finally 7" is a tower of height & := rpn, 4 for (T72)4 so
by Proposition [1.5|it is isomorphic to (7T"1)9 with g of the form ho =t Its p-integral
is the integral of the return time in A for 772, then it is 1/u"2(A) and the result follows
from the equality p2(A) = phithz (Xh2)yh2 (A).

Conversely assume the second point. Let Ay, As as in the first point. It is easy to
check that TT, = TTi(AQ)Ti for every integer i. Then T%: Ay — T(Ay) is a conjugacy
between Ta, and Tpi(4,). By ergodicity, A := A;nT"(Ay) is of positive measure for some
i that we fix. Ty, is isomorphic to (T4)" with hy = r74,,4- Similarly T, is isomorphic
to (Tx)" with hy = IT, A The pa-integral of h; is 1/pa,(A) = p(A;)/u(A), then

J hidpa <J hadpa
A A

and there exists g: A" — N* such that (T4)" is isomorphic to ((T4)")9. Then Th,
is isomorphic to (T4,)? with ¢’ of the form g o ¢~! by Proposition . We get Ty,
when we induce (T4,)? on (A;)'. By Proposition , the desired A} is of the form
¢ ((A1)Y), its pa,-measure is the inverse of the u"-integral of g, i.e. pu(A;)/p(Ay).
Then (A7) — p(Ay).

Now we prove the second point. By the ergodic theorem, there exists /N such that

for all n = N, we have A .
D h(TVz) < Y hao(TV7)

0<j<n 0<j<n
for every x in a subset B of positive measure. We can find a non null subset A of B such
that rp 4 is bounded below by N. By Proposition T" is isomorphic to (T4)"

with '
M) = D hi(TVx).
0<j<rr,a(T)

Then we have h} < hb. By Proposition [1.7, there exists ¢': A" — N* such that (T)"
is isomorphic to ((T4)"1)Y". By Proposition , T"2 is isomorphic to (771)9 for g of the
form ¢’ o o~!. Again by Proposition applied to ¢’, the uXhl—integral of g is equal to
§ 4 hbdpa/ S, hidpa. The result follows since §, hidua = §, hidp/u(A). O

2 Kakutani equivalence
Definition 2.1. Let T € Aut(X, A, ), S € Aut(Y, B, v) be two ergodic transformations.
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1. T and S are said to be Kakutant equivalent, and we write T ~x S, if Ty and
Sg are isomorphic for some Ae A, B e B.

2. Moreover they are even Kakutani equivalent, and we write T ~.x S, if in
addition two such measurable sets have the same measure : j1(A) = v(B).

Proposition 2.2. Kakutani equivalence and even Kakutani equivalence are equivalence
relations.

Proof of Proposition[2.3. ~k is obviously reflexive (take A = B) and symmetric. For
transitivity, let S € Aut(X, A, pn), T € Aut(Y,B,v),U € Aut(Z,C, p) be three ergodic
transformations and A € A, By, By € B, C' € C such that Sy4 is isomorphic to T, and
T, is isomorphic to Ugs. We use the same trick as in the proof of Proposition : T'g,
is isomorphic to T, where Bj is some T"(B;) whose intersection with By, denoted by
B, is not a null set. Now we induce T, and T’ri( B,) on B and by Proposition we
have some conjugations ¢;: By — A and ¢y: T"(B;) — C such that S, gy and U, )
are isomorphic.

Reflexivity and symmetry are also obvious for ~.k. For transitivity, it will be the
same proof as below but with the additional assumptions that u(A) = v(B;) and
v(Bg) = p(C). Since p1: By — A and ¢y: T'(By) — C are two measure isomor-
phisms, we have p4(¢1(B)) = vp,(B) and vpi(p,)(B) = pc(p2(B)). Then the so-called
additional assumptions imply u(¢1(B)) = v(B) = p(p(B)). O

Abramov’s formula gives the entropy of an induced map.

Theorem 2.3 (Abramov’s formula). Let T' € Aut(X, A, i) be an ergodic transformation
and A a measurable subset of X. Then

u(A)W(Ta) = 1(T).
Corollary 2.4. Entropy is an invariant of even Kakutani equivalence.

Remark 2.5. T is recovered by inducing 7" on X!, so Abramov’s formula can
also be stated as follows :

h(T) = h(T") L hd .

We end this section with another caracterisation of Kakutani equivalent, this is the
definition given in [ORWS82|. First we introduce some terminologies.

Definition 2.6. Let T € Aut(X, A, u), S € Aut(Y,B,v). We say that T is derivative
of S and S is a primitive of T, if T is isomorphic to an induced transformation of S,
or equivalently iof S is isomorphic to a tower of T.

Example 2.7. T is a derivative of T, T is a derivative of T".

Proposition 2.8. Let T' € Aut(X, A, u), S € Aut(Y,B,v). The following assertions
are equivalent.
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1. T ~K S,’
2. T and S have a common derivative;

3. T and S have a common primitive.

Proof of Corollary[2.8. Assume T ~k S and let A and B be subsets such that T4 and
Sp are isomorphic. Then 7' is isomorphic to TA)"1 with hy = rp 4 and S is isomorphic
to (Sp)"? with hy = rgp. By Proposition (Sp)"? is isomorphic to (T4)"2 for some
Ry of the form hy o o= Then Ty is a derivative of T and S.

Assume that U is a common derivative of T and S. Then T and S are respectively
isomorphic to U™ and U”? for some height functions h; and hy. By Proposition
Uhithz g a tower of U™ and U"2, then it is a common primitive of 7" and S.

Assume that U is a common primitive of 7" and S. Then T and S are respectively
isomorphic to U, and Ug for some subsets A and B. Using the same trick as in the
proof of Proposition , Up is isomorphic to some Upi(py where C' := A n T'(B) is of
positive measure. Finally we induce both U4 and Uri(gy on C', according to Propositon
it corresponds to inducing 7" and S on some subsets ¢;(A) and ¢3(A) and the
induced transformations are isomorphic. O

3 Generalization to Z%actions : M-Kakutani equiva-
lence

In the sequel, we introduce a generalization of Kakutani equivalence for Z?-actions.
Group actions will always be free, ergodic, bimeasurable and p.m.p.

3.1 Stable orbit equivalence

First we need to define the notion of stable orbit equivalence which is an orbit equiva-
lence but not necessarily defined on the whole space or even onto.

Definition 3.1. Let G and H be groups, T: G —~ (X, A, u) and S: H —~ (Y, B,v) be
free ergodic p.m.p. actions.

A stable orbit equivalence (SOE) between (X, A, u, T) and (Y,B,v,S) is a mea-
sure isomorphism ¢: (U, Ay, py) — (V,By,vy) (with subsets U < X and V < Y of
positive measure) satisfying

for p-a.e. x € X, p(Orbr(xz) nU) = Orbg(p(x)) n V.

U and V are respectively denoted by dom(p) and rng(p). The compression of ¢ is the

constant ( ( ))
v(rng(p
comp(¢p) 1=

- pu(dom(p))’
If U and V are of full measure, then ¢ is said to be an orbit equivalence (OFE).
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Notice that for A < dom(yp) and ¢a: A — p(A), we have comp(pja) = comp(yp).
It is a consequence of the equality ¥.Ving(p) = Hdom(y)-

Remark 3.2. If the actions are free, then we can define partial cocycles (just
cocycles if the SOE is an OE)

{ a: {(g,x)eGxX:xeUnTY (U)} — H and
B:{(hyy) e HxY:yeVnT" (V)} -G

given by the equations

VoeUn T (U), p(T9%) = S°02)(p(x)) and
VyeV AT (V), ' (Shy) = TP0) (o7 (y)).

The partial cocycles satisfy the cocycle identity
Vg, ke G, Ve eUnTV (U) n T (U), algk,z) = a(g, TFz)o(k, x)

and similarly for .

Remark 3.3. For G = H = Z, if ¢ is a SOE between ergodic transformations
T e Aut(X, A, u) and S € Aut(Y, B,v), then it is an OE between Ty and Sy
with U = dom(p) and V' = rng(y), and conversely. Indeed we have Orbr(x) n
U = Orbyy, (z) for every z € U, and similarly for S and B.

If p: U — V is a conjugacy between Ty, and Sy, then it is an SOE between
T and S with cocycles a(1,z) = r5y(o(x)) and B(1,y) = rru(e ' (y)). Indeed
for every x € U n T~1U, we have

p(T'x) = p(Tyz) = Sy(p(x)) = SV ()

and similarly for the other cocycle.

3.2 M-Kakutani equivalence

Now we define a binary relation 2 called "M-Kakutani equivalence", for a d x d ma-
trix M, among free ergodic Z?-actions. We will prove that the equivalence relation
generated by all the M-Kakutani equivalences is exactly Kakutani equivalence (up to
flip-conjugacy) in the case d = 1. Then these notions allow us to define Kakutani
equivalence in higher dimension.

In R¢, consider the norm ||.| defined by [[v| = max {|v;| | 1 <i < n}.

Definition 3.4. Let d > 1 and M a d x d real matriz. M-Kakutani equivalence is
a binary relation % defined as follows. Given free ergodic Z%-actions T on (X, A, 1)
and S on (Y,B,v), we write T 2g if there exists a SOE ¢ between T and S, with
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dom(p) = X, such that for any ¢ > 0 there are N. > 0 and X. < X of measure greater
than 1 — € satisfying for all x,y € X, belonging to the same T-orbit,

|T(x,y)| = Ne = [MT(2,y) — S(e(x), )| < el|T(z,y)]
where ’?(I, y) (the T-vector from x to y) denotes the element k € Z¢ such that TFx =y

and similarly for S.
Ford=1 and M = (m), we write T ~> S.

Replacing the variable y by T*z for a variable k € Z¢, the end of the definition can
be written as follows :

"for all z € X., ke Z* with T*z € X,

|k = N. = [ Mk — S(p(x), o(T*2))| < <[k]".
Intuitively this means that one of the partial cocycles (see Remark is almost linear.

It is not difficult to prove that if T’ MSand S¥U , then T’ MA 7 Therefore 4

is transitive.
Proposition 3.5 (|[JR84]). If ¢ is a SOE given by the definition of T S S, then

comp(e) = vienz(e)) =

With the setting of the last proposition, this implies :
1. |det M| > 1 (in particular M is invertible);

2. ¢ is an OE if and only if |det M| = 1;

3. if |det M| =1, then T 2% S if and only it § %~ T
4. I;-Kakutani equivalence is an equivalence relation.

Proof of Proposition[3.5. Let ¢ > 0 and N., X, as in the definition. Denote by B, the
set of vectors of norm |.| less or equal to n, and F,, := (B,) n Z%. Given z € X,, for
every u € Z¢ satisfying T"x € X_, define v(u) := S(¢(z), o(T%z)). T is a free action so
v is injective. When |ju| = N., v(u) satisfies by definition |[Mu — v(u)| < ¢|u/. If in
addition w is in B, then v(u) is in M B,, + €B,,. This last set is included in a(e)M B,
for some quantity a(e) > 1 tending to 1 as € tends to 0. Thus, by injectivity of v(.),
we have
{ue F\By, | Twe X.}| < |{ve Gy | S°(p(2)) € (X}

with G,, := (a(e)MB,) n Z*. (F,), and (G,), are Folner sequences of the group Z<.
Then, taking x such that the ergodic theorem holds, the right hand side is equivalent
to u(X.)|F,| and the left hand side to v(¢(X.))|G,|. It is known that |G,,| is equivalent
to |det a(e)M| x |F},|. Finally, ¢ is arbitrary and this gives

p(X) < |det Mv(p(X))
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and the invertibility of M. The reverse inequality is shown similarly (for every v such

that S”(p(z)) € p(X.), define u(v) := ?’(x, 0 15%p(x))), u(.) is injective and if v is in
B, \By., then u(v) is in some set slightly larger than M~'B,,, etc). O

Now we explain the link between M-Kakutani equivalence and Kakutani equivalence
for Z-actions.

Theorem 3.6. Let T'e Aut(X, A, u) and S € Aut(Y, B,v) be ergodic transformations,
m a real number satisfying |m| = 1. The sign of m is denoted by sgn(m).

Then T ~5 S if and only if (T%8"™) 4 is isomorphic to S for some subsets A and
B with v(B)/u(A) = 1/|m].

This implies :

1. the equivalence relation generated by the m-Kakutani equivalences for m > 1 is
exactly Kakutani equivalence (this is flip-Kakutani equivalence when the negative
m are also considered);

2. 1-Kakutani equivalence and even Kakutani equivalence are the same relations;

For an aperiodic transformation 7' € Aut(X, A, 1), we define a total order <r on
each T-orbits :
r<ry < dn>0, T"z =y.

We also define the intervals :

{Z\$<TZ<Ty} ifr<ry
[z, y]r : .
{zly<rz<pa} fy<qpax

Proof of Theorem[53.6. Since T '(z,y) = —?(y,x), it suffices to prove the result for
m = 1.

Assume T <5 S. Let ¢ be the SOE given by the definition. Let 0 < ¢ < 1
and N., X_ as in the definition. A subset A of X_. can be found such that u(A) >
0 and A, T(A),...,TN"1(A) are pairwise disjoint. Now the goal is to prove T =

0 1Spp with B = p(A), the equality u(A) = my(B) will follow since the SOE has
compression 1/m. By the property satisfied by A, we have T (x,Taz) = N, for every
T e A. This implies |mT(a: Taz) — S((p( ), p(Taz))| < 8|T(x Tszx)| and in particular
S(cp( ), (Taz)) is positive. Then (p(T4z))sez is an <g-increasing sequence. Moreover
{o(Tix) | i € Z} is exactly Orbs(¢(z)) n B. Since Sg(p(r)) is the <g-least element in
Orbg(z) n B which is <g-greater than ¢(x), we have Sg(p(z)) = p(Tax).

Assume that there is a conjugation p: A — B between T4 and Sp, with subsets A
and B satistying v(B)/u(A) = 1/|m|. In particular ¢ is an SOE (see Remark [3.3)). Let
V be a subset of Y satisfying v(V) = 1/|m| and B < V. Then ¢ can be extended to a
SOE of domain X and range V' (see Proposition 2.7 in [Fur99)]), the extension is also
denoted by ¢ and the goal is to show that it is a suitable SOE to show T' <5 S. Let
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e > 0. For every x € X, denote by zr(z) the <p-greatest element of Orby(z) n A which
is <p-less than x. For every n > 0, k,(z) denotes the cardinality of [z, T"z]r N A, i.e.

—+

kn(x) = Z ]]'TiCCEA n ~ - ’I'L[L(A),
i=0

then it diverges to 400 as n — +00. The ergodic theorem implies that for almost every
re X, Y rg 5 (Sh(p(2r(2))) ~ k() § 75,8V = k(x)/v(B). Then for a > 0
to be chosen later, there exists N(x) > 0 such that for every n > N(z),

kn(z)—1
(1—a)mn < Z rs,p (Si(e(zr(z)))) < (1 + a)mn.

Choose N. > 0 such that X, := {N(z) < N.} n { g(gp(m),gp(zﬂx)))‘ < oszg} has
measure greater than 1 —e. Let x and T"x in X,., with n > N.. The elements in
[zr(x), T"x]r N A are exactly

(@), Ta(zr()), ..., Th" (2r(2)),

and T (21(2)) is equal to zp(T"x). Then we have

S(p(x), p(T"x)) = 55

Using T4 = Spp and s (Shy, S5 'y) = rep(Shy) for every y € B (especially applied
for y = p(2r(x))), we finally obtain

\§(90($), o(T"x)) — mn| < amn + 2amN, < 3amn.

We choose o« = ¢/(3m) and this concludes the proof for n > N, since we have n =

f(m,T"x). For n < —N., notice that g(gp(m),gp(T”x)) = —g(go(y),gp(TWy)) with
y = T"x and apply what has been done with y and |n]|. O

According to del Junco and Rudolph [JR84], the following result is due to Nadler
(unpublished work).

Theorem 3.7. Let T and S be Z%-actions on (X, A, u) and (Y,B,v) respectively. If

JARCS S, then

W)

h(S) = ———.
(%) |det M|

For d = 1, this result is a consequence of Abramov’s formula and Proposition [2.2

The SOE hidden in the hypothesis T’ 28 of the last theorem has full domain. For
some SOE not necessarily having full domain, Austin gave a similar result.
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Theorem 3.8 (|Ausl6|). Let T and S be Z*-actions on (X, A, ) and (Y,B,v) re-
spectively. If ¢ is a SOE, or a SSOE; between these actions, with dom(p) < X and
mg(p) < Y, then
MT) —_ hS)
p(dom(p))  v(rng(e))’

See |Ausl6| for the definitions of SOE, (bounded stable orbit equivalence) and
SSOE; (integrable semi-stable orbit equivalence). For a brief definition, a SOE,, is
a SOE with bounded partial cocycles and a SOE is a SSOE; if the partial cocycles
can be extended to integrable full cocycles (by "cocycle" we mean that the extension
satisfies the cocycle identity). Austin showed that SOE, implies SSOE; (the bounded
partial cocycle can be extended to a bounded full cocycle, in particular this extension

is integrable). Finally he showed that SSOE; implies T’ ¥ S or S T for some matrix
M, depending on whether the compression is less or greater than 1, in the first case any
extension to a SOE of full domain satisfies the definition of M-Kakutani equivalence
(we can find similar ideas between this proof and the one of Theorem [3.6)). Finally the

SSOE; has the same compression as its extension, then it is equal to 1/|det M| and
Theorem [3.§] follows from Theorem [3.71

4 A brief overview of Ornstein’s theory and a parallel
theory for Kakutani equivalence

Given a finite partition P = (Py,..., P;) on X and T' € Aut(X, A, i), one can associate
for every point z of the space a word (a;);cz where a; is the integer in {1,...,d} such
that Tz is in P,,. When studying a dynamic, this coding (for relevant partitions)
brings a lot of information. We can also compare points by comparing the associate
subwords.

Definition 4.1. We define the normalized Hamming metric between words of same
length by : .
dn((ai)1<i<n; (bi)1<i<n) = E‘{l <i<n|a; b}

This metric is used by Ornstein [Orn74] to compare finite subwords. Then he defined
classes of transformations called "finitely determined" (FD) and "very weak Bernoulli"
(VWB), these classes are equal (Ornstein in |[Orn74| for one inclusion, Ornstein and
Weiss in [ORWS82| for the other) and the idea behind the definitions is that these
transformations admit similar partitions giving close words (for the d-metric). Finally
Ornstein showed that two such transformations with equal entropy are isomorphic.
Bernoulli shifts are finitely determined, then entropy is a total invariant of conjugacy
in this subclass.

The problem with the d-metric is that the words abababa and bababab for distinct
letters a and b are not d-close whereas they both admits the same long subsequence
bababa. Then we define another metric denoted by f, this is a more flexible version of
d-metric.
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Definition 4.2. The f-metric between words of same length is defined by :

k

Jn((@i)i<i<n, (i) i<i<n) = 1 — -

where k is the maximal integer for which we can find equal subsequences (a;,)1<e<r and
(bjg)lsfgk; with n<...< Zk and jl <...< jk

In [ORWS2|, Ornstein, Rudolph and Weiss replaced the d-metric by the f-metric
and then obtained an analogous theory for Kakutani equivalence. Indeed they defined
a class of transformations called "finitely fixed" (FF) and showed that this coincides
with the notion of "loosely Bernoulli" (LB) already defined by Feldman in [Fel76|. They
finally stated the following equivalence theorem.

Theorem 4.3. Two finitely fized transformations with equal entropy are even Kakutani
equivalent.

The FF class contains the FD class (and then the Bernoulli shifts). Rank one
transformations (odometers, irrational rotations, etc) are FF. It is not the unique result
of the theory, other important results :

e the FF class (or equivalently LB) is closed under Kakutani equivalence, meaning
that if T"is FF and T ~k S, then S is also FFﬂ;

e if T'is FF, then so are any induced map and any tower.

In higher dimension, some authors generalized this theory for I;-Kakutani equiva-
lence (see for instance |[Has92|, [JS98], [JSO1]).

Now we assume Theorem and we will give important consequences that we can
proove with the tools developped in last sections.

Corollary 4.4. If both T € Aut(X, A, u) and S € Aut(Y,B,v) are FF and h(S) >
h(T) > 0, then S is isomorphic to T'x with some subsets A with p(A) = h(T')/h(S).

Example 4.5. Given a Bernoulli shift 7', any other Bernoulli shift S of higher
entropy can be recovered by inducing 7'.

Proof of Corollary[4.4. By Abramov’s formula, We can find a subset A’ < X such that
S and T4 have equal entropy (with u(A") = h(T")/h(S)). Then by Theorem [4.3| these
transformations are even Kakutani equivalent, meaning that Ts and S are isomorphic
for some subsets B < A" and C' < Y satisfying

pa(B) = v(C).

In particular we have u(B) < v(C), then {, rrpdy > §, rgcdr. By Proposition
this implies that (T5)""5 and ((S¢)™s:¢)¢ are isomorphic for some g of p"S-C-integral
equal to u(C)/u(B) = 1/u(A’). Then T is isomorphic to SY, i.e. T4 and S are isomor-
phic for some subset A satisfying pu(A) = u(A). O

3In [Fer97], Ferenczi defines the class of LB transformations to be the smallest class which contains
all the irrationnal rotations and closed under Kakutani equivalence.
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Corollary 4.6. If both T' € Aut(X, A, n) and S € Aut(Y,B,v) are FF and h(S) =
h(T) = 0, then for anye > 0, S is isomorphic to Tx for some subset A with u(A) = 1—¢.

Example 4.7. Irrationnal rotations can be recovered by inducing any rank-one
systems on arbitrary large subsets.

Proof of Corollary[4.6. For any subset A’ < X, we have h(S) = h(Ta). The last

proof shows that consequently S is isomorphic to T4 for some subset A satisfying

u(A) = () 0
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