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Abstract

We give an exposition of the proof of Theorem 1 from [Ste71] which is more
detailed than the original one.

Let Γ =
⊕

n⩾1 Z/2Z, denote by γi the i’th coordinate natural generator and
Γi = ⟨γ1, . . . , γi⟩ =

⊕i
n=1 Z/2Z.

Theorem 1 (Stepin). Let S, T : Γ → Aut(X,µ) be two free pmp actions of Γ on a
standard probability space (X,µ), suppose that for every n ∈ N, S(Γn) has the same
orbits as T (Γn), then

|h(S)− h(T )| ⩽ log 2.

Proof. For brevity, we let Sγ = S(γ) and Tγ = T (γ) be the pmp bijections induced
by these two actions. We are going to bound the entropy of S in terms of that
of T , which by symmetry will yield the desired result. The key to this bound is
the following claim, which estimates how much larger the S(Γn)-saturation of a
T (Γn)-invariant partition is.

Claim. Define by induction p1 = 1 and pk+1 = 2kp2k. Let n ⩾ 1, let P be a partition
which is T (Γn) invariant. Then

∨
γ∈Γn

SγP is obtained by dividing each atom of P
in at most pn elements.

Proof of the claim. The proof is by induction. For n = 1 we defined p1 = 1 and our
claim is clear since two involutions sharing the same orbits must be equal.

Suppose the claim has been proved at rank n, let P be T (Γn+1)-invariant. In
particular P is T (Γn) invariant so by our induction hypothesis if we let Q be the
partition obtained by S(Γn)-translating P , Q is obtained by splitting each element
of P into at most pn pieces. Observe that

∨
γ∈Γn+1

SγP = Q ∨ S(γn+1)Q since γn+1

is an involution commuting with Γn and Γn+1 = ⟨Γn, γn+1⟩.
Observe that by freeness each S(Γn+1)-orbit splits into two S(Γn)-orbits, and is

equal to a T (Γn+1)-orbit. Since S(Γn) has the same orbits as T (Γn), the cocycle of
Sγn+1 must have its n + 1 coordinate equal to 1. We thus get a partition (Aγ)γ∈Γn

of X such that for all x ∈ Aγ,

Sγn+1(x) = TγTγn+1(x).

We claim that the partition

Q̃ = {Aγ ∩ C ∩ TγTγn+1(C
′) : C,C ′ ∈ Q, γ ∈ Γn}
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refines Q while being S(γn+1)-invariant. First note that each Aγ is Sγn+1-invariant
since it is the place where Sγn+1 coincides with another fixed involution, namely
TγTγn+1 . It follows from the definition of Aγ that we can rewrite Q̃ as

Q̃ = {Aγ ∩ C ∩ Sγn+1(C
′) : C,C ′ ∈ Q, γ ∈ Γn}.

Since Sγn+1 is an involution, it then easily follows that Q̃ is Sγn+1-invariant.
By our assumption on P , the pmp bijection TγTγn+1 permutes the elements of

P , each which was cut into at most pn pieces of the form C or C ′ when obtaining
Q. Since |Γn| = 2n, we get from the first definition of Q̃, namely

Q̃ = {Aγ ∩ C ∩ TγTγn+1(C
′) : C,C ′ ∈ Q, γ ∈ Γn}

that Q̃ was obtained by cutting each element of P into at most 2n × pn × pn pieces.
As a consequence1, each element of P will be split in at most 2n × pn × pn = pn+1

pieces when first constructing Q and then constructing Q∨Sγn+1Q =
∨

γ∈Γn+1
SγP .

This finishes the proof of the induction. □claim

We can now compare entropies. Given a finite set of pmp bijections F and a
partition R, we denote by

RF =
∨
T∈F

T (R)

the partition generated by the T -translates of R for T ∈ F . Fix a finite partition
R. Then by definition h(T (Γ),R) = limn→+∞

H(RT (Γn))
2n

.
Now let Qn = (RT (Γn))S(Γn), which refines RS(Γn). By our previous claim applied

to P = RT (Γn),
H(Qn) ⩽ H(PT (Γn)) + log pn

(this follows by conditioning on the elements of PT (Γn) since these have been split
in at most pn pieces and a partition in pn pieces has entropy at most log pn). In
particular H(Qn)

2n
⩽ log pn

2n
. Now log pn+1 = 2 log pn + n log 2 so

log pn+1

2n+1
=

log pn
2n

+
n log 2

2n+1
.

Since the series
∑

n
n log 2
2n+1 converges to log 2, we conclude that

h(S(Γ),R) ⩽ h(T (Γ),R) + log 2 ⩽ h(T ) + log 2

Taking a supremum over all R we get

h(S) ⩽ h(T ) + log 2,

and the result follows by symmetry.
1Note that here we do not claim (and it might very well not be the case) that Q̃ is S(Γn+1)-

invariant, we only need that it is S(γn+1)-invariant.
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Remark 2. In particular, the above theorem says that if we restrict orbit equiva-
lence of Γ-actions by requiring it to take Γn-orbits to Γn-orbits for every n ∈ N, we
get countably many different actions up to this finer equivalence relation on actions.
We should also mention that Stepin refines the above result and gets continuum
many such actions in [Ste71, Theorem 2], which uses Theorem 1. Vershik obtained
a similar result to Stepin’s in the same journal issue as Stepin [Ver71]. Moreover,
another result of Vershik shows that given S, T : Γ → Aut(X,µ), there is a sequence
(nk) and an orbit equivalence which takes S(Γnk

) orbits to T (Γnk
)-orbits for every

k ∈ N [Ver68]. The above result shows that in general, one cannot take nk = k.
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