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Abstract

We present an elementary proof of the Kolmogov-Sinai theorem, following
the books of Glasner [Gla03] and Downarowicz [Dow11] and the lecture notes
of Rohlin [Rok67].

Let (X,µ) be a standard probability space. We will look at everything up to
measure zero. In particular we will identity two countable partitions of X into Borel
subsets if they coincide up to measure zero.

1 Entropy
Let α be a countable partition of X into Borel subsets. Define the entropy of α as

H(α) = −
∑
A∈α

µ(A) lnµ(A).

This is the average amount of information on x one gets from knowing in which
atom of the partition a µ-random element x ∈ X is.

The function φ : t 7→ −t ln t is strictly concave: its derivative is φ′(t) = − ln t− 1
which is strictly decreasing. From this two important properties can be derived.

Proposition 1. The entropy over partitions into k subsets is at most ln k, and this
value is attained when all the atoms have the same measure (1/k).

Proof. The function φ is strictly convex, so given p1, ..., pk > 0, we have

φ

(
k∑
i=1

pi
k

)
>

k∑
i=1

Φ(pi)

k

with equality if an only if the pi’s are all equal. The left hand term is equal to lnn
n

and the right hand term is equal to −
∑n

i=1 pi ln pi
n

so multiplying both by n we get the
desired result.

Proposition 2. As a function on the convex set of probability measures over a
countable set, entropy is strictly concave.
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Proof. Let t ∈ [0, 1], consider two probability measures µ and ν over a fixed count-
able set K. Then

H(tµ+ (1− t)ν) =
∑
i∈K

φ(tµ(i) + (1− t)ν(i))

>
∑
i∈K

tφ(µ(i)) + (1− t)φ(ν(i))

> tH(µ) + (1− t)H(ν).

We conclude that the entropy is concave. That it is strictly concave follows the fact
that φ is strictly concave by the same arguement.

One of the fundamental properties of entropy is subadditivity: if α and β are
two countable partitions, their join is the partition α∨β = {A∩B : A ∈ α,B ∈ β},
and we have

H(α ∨ β) 6 H(α) +H(β).

To prove this property, we will introduce relative entropy H(α|β), which is also
important in its own right. This measures the amount information one gets from
knowing in which atom of the partition a µ-random element x ∈ X lies when we
already know it was lying in some atom B of β:

H(α|β) = −
∑
B∈β

∑
A∈α

µ(A ∩B) ln

(
µ(A ∩B)

µ(B)

)
.

Using the fact that lnµ
(
µ(A∩B)
µ(B)

)
= ln (µ(A ∩B))− ln (µ(B)) and

∑
A∈α µ(A∩B) =

µ(B), we get the formula

H(α|β) = H(α ∨ β)−H(β)

which we rewrite as
H(α ∨ β) = H(α|β) +H(β). (1)

So entropy is an increasing function on partitions:

H(α ∨ β) > H(β) (2)

Given a subset B ⊆ X and a partition α, we define HB(α) as the entropy of the
partition induced by α on B, where B is equipped with the probability measure µB
defined by µB(A) = µ(A)

µ(B)
. Now observe that by definition

H(α|β) =
∑
B∈β

µ(B)HB(α). (3)

Using the concavity of the entropy as a function of probability measures on finite
sets (for each B the partition α defines a probability measure µB on α and the
convex combination

∑
µ(B)µB is equal to the probability measure induced by µ on

α), we conclude that
H(α|β) 6 H(α) (4)
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From the formula (1), we can now conclude that we have subadditivity as announced:

H(α ∨ β) 6 H(α) +H(β) (5)

Finally, let us observe that we have an equality in (5) if and only if we have equality
in (4), which by strict concavity happens only when for all A ∈ α, the quantity
µ(A∩B)
µ(B)

does not depend on B, i.e. when α and β are independent.

2 Entropy of a measure-preserving transformation
Let us recall Fekete’s lemma: given a sequence (un) of reals, if for every n,m ∈ N
we have un+m 6 un + um (i.e. the sequence is subadditive) then limn

un
n

exists and
is equal to infn

un
n

(see e.g. [Wal82, Thm. 4.9]).
We now have all the tools to define the entropy of a measure preserving trans-

formation T . First, given a countable partition α, its T -entropy is defined by

h(α, T ) = inf
n

H
(∨n−1

i=0 T
−iα
)

n
= lim

n→+∞

H
(∨n−1

i=0 T
−iα
)

n
(6)

where the limit exists and the last equality holds by virtue of Fekete’s subadditive
lemma.

Definition 3. Let T be a measure-preserving transformation. A partition α is
dynamically generating (with respect to T ) if the smallest T -invariant σ-algebra
containing α is the Borel σ-algebra of X.

Example 4. ConsiderX = KZ whereK is a countable set (the base space) equipped
with a probability measure ν and the invariant measure is µ = ν⊗Z. The Bernoulli
shift onX is the transformation T defined by T ((xn)n∈N) = (xn−1)n∈Z. Every k ∈ K
defines a measurable set Ak := {(xn)n∈Z : x0 = k}. The partition α = (Ak)k∈K is
then a dynamically generating partition. Note moreover that

h(α, T ) = H(α) = −
∑
k∈K

ν(k) ln ν(k).

The k-shift is the Bernoulli shift over a setK with k elements where ν is the equidis-
tributed probability measure (each element has measure 1/k). Before Kolmogorov’s
work, it was a famous open problem wether the 3-shift could be conjugate to the
2-shift.

We can now state the Kolmogorov-Sinai theorem.

Theorem 5. Let T be a measure-preserving transformation. Suppose α is a finite
generate dynamically generating partition. Then

h(T ) = h(α, T ).

So for a Bernoulli shift, the entropy is equal to the entropy of the base space. In
particular, the 2-shift is not conjugate to the 3-shift. The theorem will follow from
the following more technical result which we will prove later.
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Theorem 6. Suppose (αn) is an increasing family of partitions (meaning that αn+1

refines αn)) such that the sigma-algebra generated by
⋃
n∈N αn is equal to the Borel

σ-algebra of X. Then
h(T ) = lim

n→+∞
h(αn, T ).

Proof of Thm. 5. Since α is a generating partition, the sequence of partitions (αn)
defined by

αn :=
n∨

i=−n

T−iα

satisfies the asumptions of Thm. 6. But for every n ∈ N we have

h(αn, T ) = lim
N→+∞

H
(∨N−1

j=0 T
−jαn

)
N

Note that αn =
∨n
i=−n T

−iα so

N−1∨
j=0

T−jαn =
N−1+n∨
i=−n

T−iα.

Now since T n is measure-preserving transformation we have

H

(
N−1+n∨
i=−n

T−iα

)
= H

(
N−1+2n∨
i=0

T−iα

)

We conclude that

h(αn, T ) = lim
N→+∞

H
(∨N−1+2n

i=0 T−iα
)

N

= lim
N→+∞

N + 2n

N

H
(∨N−1+2n

i=0 T−iα
)

N + 2n

= h(α, T )

The conclusion now follows from Thm. 6.

Note that the proof used the fact that in Z, big invervals like [0, N ] are almost
invariant under translation, which is one of the characterizations of amenability. We
now need to prove Thm. 6. An important tool will be the following inequality for
arbitrary countable partitions α and β and measure preserving transformation T :

h(T, β) 6 H(β|α) + h(T, α) (7)

Note that this inequality is true if we replace h(T, ·) by H(·): indeed by equation
(1) we have

H(β|α) +H(α) = H(α ∨ β) = H(α|β) +H(β) > H(β).

Assuming this inequality, we now sketch the proof of Thm. 6.
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Sketch of proof of Thm. 6. Let (αn) be an increasing family of partitions such that
the sigma-algebra generated by

⋃
n∈N αn is equal to the Borel σ-algebra of X. It is

not hard to check that the sequence (h(αn, T ))n∈N is increasing (use that if β refines
α then H(α) 6 H(β) as per equation (5)). So the limit limn→+∞ h(αn, T ) exists,
and by the definition of h(T ) it satisfies

h(T ) > lim
n→+∞

h(αn, T ).

To prove the reverse inequality, let β be a finite partition and let n ∈ N. By
inequality (7) we have

h(β) 6 H(β|αn) + h(αn).

Now since the σ-algebra generated by αn is equal to the whole Borel σ-algebra, we
should have H(β|αn)→ 0 and hence

h(β) 6 lim
n→+∞

h(αn).

So h(T ) 6 limn→+∞ h(αn) as wanted.

There are two things we need to justify in order to make the above argument
valid:

• the inequality (7) and

• the fact that H(β|αn)→ 0 (see Prop. 10.

In order to do this, we will first generalize (in)equalities (1), (4) and (5) to the
relative setting in the next section so as to obtain inequality (7), and in section 4
we will prove that H(β|αn)→ 0.

3 More on relative entropy
Let us first do the relative version of the computations which led us to formula (1).
We have

H(α ∨ β|γ) =−
∑

(A,B,C)∈α×β×γ

− lnµ(A ∩B ∩ C) ln

(
µ(A ∩B ∩ C)

µ(C)

)

=−
∑

(A,B,C)∈α×β×γ

µ(A ∩B ∩ C) ln

(
µ(A ∩B ∩ C)

µ(B ∩ C)

µ(B ∩ C)

µ(C)

)

=−
∑

(A,B,C)∈α×β×γ

µ(A ∩B ∩ C) ln

(
µ(A ∩B ∩ C)

µ(B ∩ C)

)

−
∑

(A,B,C)∈β×γ

µ(A ∩B ∩ C) ln

(
µ(B ∩ C)

µ(C)

)
.

Since
∑

A∈α µ(A ∩B ∩ C) = µ(B ∩ C) we obtain the relative version of (1)

H(α ∨ β|γ) = H(α|β ∨ γ) +H(β|γ) (8)
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In particular, relative entropy is an increasing function over partitions:

H(α ∨ β|γ) > H(β|γ) (9)

We now define a conditional version of HC for C ⊆ X of positive measure: we let
HC(α|β) be the relative entropy of the partitions induced by α and β on C equipped
with the probability measure µC .

Observe that we have the following immediate consequence of (3):

H(α ∨ β|γ) =
∑
C∈γ

µ(C)HC(α ∨ β). (10)

Then by formula (1) we have

H(α ∨ β|γ) =
∑
C∈γ

µ(C)HC(α|β) +
∑
C∈γ

µ(C)HC(β)

H(α ∨ β|γ) =
∑
C∈γ

µ(C)HC(α|β) +H(β|γ)

So using 8 we can identify

H(α|β ∨ γ) =
∑
C∈γ

µ(C)HC(α|β) (11)

By concavity of entropy (Prop. 2) we obtain the relative analogue of (4):

H(α|β ∨ γ) 6 H(α|β) (12)

Finally, using equation (10) and subadditivity of entropy (inequation (5)), we obtain
the subadditivity of relative entropy :

H(α ∨ β|γ) 6 H(α|γ) +H(β|γ). (13)

Proposition 7. Inequality (7) holds: for every measure-preserving transformation
T and every countable partitions α and β we have

h(T, β) 6 H(β|α) + h(T, α)

Proof. Let n ∈ N, then by inequality (2) we have

H

(
n−1∨
i=0

T−iβ

)
6 H

(
n−1∨
i=0

T−iβ ∨
n−1∨
i=0

T−iα

)
so by equation (1)

H

(
n−1∨
i=0

T−iβ

)
6 H

(
n−1∨
i=0

T−iβ

∣∣∣∣∣
n−1∨
i=0

T−iα

)
+H

(
n−1∨
i=0

T−iα

)
. (14)

Now by subadditivity of relative entropy (inequality (13)) we have

H

(
n−1∨
i=0

T−iβ

∣∣∣∣∣
n−1∨
i=0

T−iα

)
6

n−1∑
i=0

H

(
T−iβ

∣∣∣∣∣
n−1∨
j=0

T−jα

)
.

6



For every i ∈ {0, ..., n− 1}, inequality (12) yields

H

(
T−iβ

∣∣∣∣∣
n−1∨
i=0

T−iα

)
6 H(T−iβ|T−iα) = H(β|α).

We can thus deduce from inequality (14) that

H

(
n−1∨
i=0

T−iβ

)
6 nH(β|α) +H

(
n−1∨
i=0

T−iα

)
.

Dividing all by n and letting n tend to +∞ we obtain the desired inequality (7).

4 Using the topology on the space of partitions
We will now justify that if αn is an increasing sequence of finite partitions whose
union generates the whole σ-algebra of X, then for every finite partition β we have
H(β|αn)→ 0.

We fix once and for all k ∈ N and study the set Pk of partitions of X into k
(measurable) subsets. We view such partitions as sets of subsets rather than tuples.
Given such a partition α let E(α) be the set of enumerations of α, i.e. bijective maps

f : {0, ..., k − 1} → α.

We then have a natural metric dµ on the set Pk of such partitions:

dµ(α, β) = min
(f,g)∈E(α)×E(β)

k−1∑
i=0

µ(f(i)4 g(i)).

Given an arbitrary partition α, we let 〈α〉 be the set of all subsets obtained as
reunions of elements of α. We let Pk(α) be the set of all partitions of X into k
subsets belonging to 〈α〉.

Lemma 8. Suppose (αn) is an increasing sequence of finite partitions whose union
generates the whole σ-algebra of X, then

⋃
n∈NPk(αn) is dense in Pk for the metric

dµ.

Proof. We leave it to the reader to check that it suffices to show that for every ε > 0
and every measurable B ⊆ X there is A ∈

⋃
n∈N〈αn〉 such that µ(A4B) < ε. One

then just needs to check that the set F of measurable B ⊆ X such that there is
A ∈

⋃
n∈N 〈αn〉 such that µ(A4 B) < ε is a σ-algebra (since it obviously contains⋃

n∈N αn the conclusion will follow).
Observe that F is stable under complements for µ(X \A4X \B) = µ(A4B).

Now let (Bn) be a sequence of elements of F , we want to approximate B :=
⋃
nBn

by some A ∈
⋃
n∈N 〈αn〉. We first approximate each Bn by some An ∈

⋃
n∈N 〈αn〉 up

to an ε/2n error, and observe that if A =
⋃
nAn then we have µ(A4B) 6 ε and

lim
n→+∞

µ(A \
n⋃
i=0

An) = 0

so that B is 2ε-approximated by some A′ ∈
⋃
n 〈αn〉 as wanted.

7



We now define another metric dH on the space of partitions into k subsets by

dH(α, β) = max(H(β|α), H(α|β)).

Observe that H(β|α) = 0 if and only if for all A ∈ α and all B ∈ β, we have
µ(A∩B)
µ(A)

∈ {0, 1}. This means that α refines β, in particular dH(α, β) = 0 if and only
if α = β.

Symmetry of dH is clear, and finally the triangle inequality follows from

H(γ|α) 6 H(γ ∨ β|α) = H(γ|β ∨ α) +H(β|α) 6 H(γ|β) +H(β|α)

so dH is indeed a metric.
The metric dH is actually equivalent to dµ, but we will only show that it is coarser

than dµ since that is all we need. For more properties of this metric including its
equivalence to dµ, see [Dow11, Sec. 1.7].

Proposition 9. The topology defined by dH is coarser than the one defined by dµ.

Proof. We have to show that the map id : (Pk, dµ) → (Pk, dH) is continuous. Let
α ∈ Pk and δ > 0. Let β ∈ Pk, suppose dµ(α, β) < ε for some ε > 0 to be defined
later. Enumerate α = {Ai : i = 1, ..., k} and β = {Bi : i = 1, ..., k} so that

dµ(α, β) =
k∑
i=1

µ(Ai4Bi) < ε

Let C =
⋃k
i=1Ai 4 Bi. Consider the partition γ = {C,X \ C}. We then have by

inequality (9)

H(α|β) 6 H(α ∨ γ|β)

So by equality (8) we deduce

H(α|β) 6 H(α|γ ∨ β) +H(γ|β).

Now H(γ|β) 6 H(γ) = H(ε, 1− ε). On the other hand by formula (11) we have

H(α|γ ∨ β) = µ(C)HC(α|β) + (1− µ(C))HX\C(α|β).

Note that HX\C(α|β) = 0 by the definition of C. Moreover HC(α|β) 6 HC(α) 6 ln k
by Prop. 1. We thus have the inequality

H(α|β) 6 ε ln(k) +H(ε, 1− ε).

By symetry we also have H(β|α) 6 ε ln(k) +H(ε, 1− ε), and it follows that if ε was
chosen small enough, we have dH(α, β) < δ as wanted.

We can finally prove the final piece of the proof of Thm. 6, and hence of the
Kolmogorov-Sinai theorem.

Proposition 10. Suppose (αn) is an increasing sequence of finite partitions whose
union generates the whole σ-algebra of X. Then for every finite partition β we have
H(β|αn)→ 0.
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Proof. Let k be the cardinality of β. By Lemma 8 for every n ∈ N we find βn ∈
Pk(αn) such that dµ(βn, β) → 0. By Proposition 9, we obtain that dH(βn, β) → 0.
Now for all n ∈ N we now have

H(β|αn) 6 H(β ∨ βn|αn)

= H(β|βn ∨ αn) +H(βn|αn)

H(β|αn) 6 H(β|βn) +H(βn|αn)

But by the definition of dH we have H(β|βn)→ 0, and since αn refines βn we have
H(βn|αn) = 0. So H(β|αn)→ 0 as wanted.

Remark 11. One could of course give a direct proof without mentioning the metric
dH , but we felt it would be more transparent this way. Moreover, the metric dH is
important in its own right since it is a complete separable metric on the space of
all countable partitions of finite entropy (see [Dow11, Fact 1.7.15]). We should also
mention that there is a notion of entropy relative to a σ-algebra and that Prop. 10
can then be derived from a much more general statement (see [Gla03, Thm. 14.28]).
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