TD 5 – Algèbres de von Neumann finies

Exercice 1. Fourier dans l'algèbre de von Neumann $L\mathbb{Z}$.

- 1. Montrer que l'isomorphisme de Fourier $L^2(\mathbb{S}^1) \to \ell^2(\mathbb{Z})$ implémente un isomorphisme entre les algèbres de von Neumann $L^{\infty}(\mathbb{S}^1)$ et $L\mathbb{Z}$ qui envoie l'intégrale sur l'état tracial canonique de $L\mathbb{Z}$.
- 2. On identifie l'intervalle [0,1[au cercle à via l'application $t\mapsto e^{2i\pi t}$. Soit $p=\chi_{[0,\frac{1}{2}]}$. Calculer les coefficients de Fourier de p.
- 3. Calculer la trace de p^2 de deux manières différentes afin de déduire que

$$\sum_{n \in \mathbb{N}^*} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice 2. Espérance conditionelle et conjugaison par un unitaire.

Soit (M, τ) une algèbre de von Neumann finie, soit $B \subseteq M$ une sous-algèbre de von Neumann. Soit $u \in \mathcal{U}(M)$, soit E_B l'espérance conditionnelle sur B. Montrer que pour tout $x \in M$,

$$E_B(uxu^*) = uE_{u^*Bu}(x)u^*.$$

Exercice 3. Ergodicité.

Soit Γ un groupe dénombrable agissant sur un espace de probabilités (X, μ) en préservant la mesure. On note α l'action associée sur $L^{\infty}(X, \mu)$, donnée par $\alpha(\gamma)f(x) = f(\gamma^{-1}x)$.

On rappelle qu'on a défini en cours l'ergodicité comme étant le fait que les seules fonctions dans $L^{\infty}(X,\mu)$ qui sont Γ -invariantes sont constantes. On définit la représentation unitaire de Γ associée à l'action par $\kappa(\gamma)f(x) = f(\gamma^{-1}x)$. On identifie $L^{\infty}(X,\mu)$ et son image dans $\mathcal{B}(L^2(X,\mu))$ par multiplication.

- 1. Montrer que pour tout $f \in L^{\infty}(X, \mu)$ et tout $\gamma \in \Gamma$, on a $\kappa(\gamma)f\kappa(\gamma)^* = \alpha(\gamma)f$.
- 2. En déduire que l'action est ergodique ssi $\kappa(\Gamma)' \cap L^{\infty}(X,\mu) = \mathbb{C}1$.
- 3. Conclure que l'action est ergodique ssi l'algèbre de von Neumann engendrée par $\kappa(\Gamma)$ et $L^{\infty}(X,\mu)$ est égale à $\mathcal{B}(L^{2}(X,\mu))$.
- 4. Généraliser le résultat précédent au cas où Γ agit sur une algèbre finie (M,τ) par automorphismes préservant la trace.

Les trois questions suivantes sont facultatives ; elles font le lien avec des versions de l'ergodicité plus classiques.

- 5. Montrer que l'action est ergodique ssi les seules $f \in L^2(X, \mu)$ qui sont $\kappa(\Gamma)$ -invariantes sont constantes.
- 6. Montrer que l'action est ergodique ssi les seuls $A \subseteq X$ mesurables tels que pour tout $\gamma \in \Gamma$, $\mu(\gamma A \triangle A) = 0$ satisfont $\mu(A) = 0$ ou 1.
- 7. Montrer que l'action est ergodique ssi les seuls $A \subseteq X$ mesurables tels que pour tout $\gamma \in \Gamma$, $A = \gamma A$ satisfont $\mu(A) = 0$ ou 1.

Exercice 4. Produit croisé.

On rappelle qu'étant donné Γ agissant sur (X, μ) en préservant la mesure, il agit également diagonalement sur $\Gamma \times X$ en préservant la mesure (infinie) produit de la mesure de comptage et de μ . Par commodité on note u_{γ} l'unitaire de Koopman associé à chaque $\gamma \in \Gamma$, et on fait

agir $L^{\infty}(X,\mu)$ par multiplication sur $L^{2}(X \times \Gamma)$: $fg(x,\gamma) = f(x)g(x,\gamma)$. On note une fois de plus α l'action de Γ sur $L^{\infty}(X,\mu)$.

- 1. Montrer que $u_{\gamma}fu_{\gamma}^* = \alpha(\gamma)f$ pour tout $\gamma \in \Gamma$ et $f \in L^{\infty}(X, \mu)$.
- 2. On rappelle que le vecteur $\chi_{e\times X}$ est cyclique et séparant pour l'algèbre de von Neumann engendrée par $\kappa(\Gamma)$ et $L^{\infty}(X,\mu)$, que l'on note $L^{\infty}(X,\mu) \rtimes \Gamma$. Montrer que pour tout $x \in L^{\infty}(X,\mu) \rtimes \Gamma$, on a la convergence L^2

$$x = \sum_{\gamma} u_{\gamma} E_{\mathcal{L}^{\infty}(X,\mu)}(u_{\gamma}^* x) = \sum_{\gamma \in \Gamma} E_{\mathcal{L}^{\infty}(X,\mu)}(x u_{\gamma}^*) u_{\gamma}.$$

Caractériser les éléments de $\{u_{\gamma} \colon \gamma \in \Gamma\}''$ par leurs coefficients dans l'écriture ci-dessus.

3. On suppose Γ abélien. Montrer que l'action est ergodique ssi

$$\{u_{\gamma} \colon \gamma \in \Gamma\}' \cap (\Gamma \rtimes L^{\infty}(X, \mu)) \subseteq \{u_{\gamma} \colon \gamma \in \Gamma\}''.$$

4. En déduire que si Γ est abélien et l'action est ergodique, alors $\{u_{\gamma} \colon \gamma \in \Gamma\}''$ est une sous-algèbre abélienne maximale du produit croisé $\Gamma \rtimes L^{\infty}(X,\mu)$.