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Infinite permutation groups

Throughout: G ≤ Sym (Ω) is transitive and Ω is countably
infinite

The images of α ∈ Ω under G is the orbit of α, denoted αG

G is a Polish group

When studying infinite permutation groups, one typically wishes
to impose some kind of finiteness condition on G

E.g:

• G has only finitely many orbits on Ωn, for all n ∈ N
(Oligomorphic)

• Gα has only finite orbits, for all α ∈ Ω
(Subdegree finite)



Infinite permutation groups

Throughout: G ≤ Sym (Ω) is transitive and Ω is countably
infinite

The images of α ∈ Ω under G is the orbit of α, denoted αG

G is a Polish group

When studying infinite permutation groups, one typically wishes
to impose some kind of finiteness condition on G

E.g:

• G has only finitely many orbits on Ωn, for all n ∈ N
(Oligomorphic)

• Gα has only finite orbits, for all α ∈ Ω
(Subdegree finite)



Subdegree finite permutation groups are the natural
permutation representations of tdlc groups

• Suppose H is tdlc. By van Dantzig’s theorem, H contains a
compact open subgroup U

• Let Ω be the set of cosets of U in H, then H acts
transitively on Ω by multiplication

• Think of Sym (Ω) as a topological group, where the basis of
the topology is all pointwise stabilizers of finite subsets of
Ω

• Let H � U denote the closure of the permutation group
induced by H acting on Ω. Then H � U is subdegree finite

• H � U is called the Schlichting completion of the pair
(H,U) by Reid and Wesolek
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The wreath product in its product action

Suppose H ≤ Sym (Γ) and m ∈ N

H Wr Sm has a product action on Γm:

• Think of elements of H Wr Sm as (h1, . . . ,hm)σ, where
each hi ∈ H and σ ∈ Sm

• For (γ1, . . . , γm) ∈ Γm we have
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The box product

Suppose H ≤ Sym (Γ) is transitive and m ∈ N

Let Λ be a graph whose vertex set is Γ, such that H ≤ Aut (Λ)

Let X (m,Λ) be the (infinite) graph such that every vertex x lies
in m copies of Λ, and these copies only intersect at x

X (2,K3)

The graph X (m,Λ) is called a lobe graph, and the copies of Λ
are called its lobes

The box product H � Sm is the largest transitive subgroup of
Aut (X (m,Λ)) that induces H on each of the lobes
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Why is the box product important?

For permutation group theorists it is important because it is the
first product that preserves primitivity to have been discovered
in over a century

For topological group theory, the box product was used to
prove:

Theorem. (S., 2014) There are 2ℵ0 pairwise non-isomorphic,
tdlc, compactly generated simple groups.
Moreover, these groups can be chosen so that they contain the
same compact open subgroup.
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Primitive permutation groups

A permutation group G ≤ Sym (Ω) is primitive if Ω admits no
G-invariant equivalence relation except the trivial and universal
relations

How to think of imprimitive groups:

All finite permutation groups can be decomposed into primitive
pieces
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Finite primitive permutation groups

The structure of finite primitive permutation groups is known

O’Nan-Scott Theorem (’79). Every finite primitive permutation
group G is either:
• Basic (affine, almost simple or diagonal)
• Contained in H Wr Sym(m) with its product action, where

H is basic
• (or twisted wreath type)



Structure of subdegree finite primitive permutation
groups

Theorem (S.) Suppose G ≤ Sym (Ω) is closed, infinite,
subdegree finite and primitive, then G is:

• Almost topologically simple:
(a) Almost simple and discrete
(b) Almost topologically simple and non-discrete

• Contained in H Wr Sym(m) with its product action, where
H is almost simple, subdegree finite and primitive

• Note: affine, diagonal and twisted wreath product types do
not exist
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Almost topologically simple case
Many groups in this class exhibit a product structure (but not a
wreath product structure)

• Suppose G is closed, subdegree-finite, primitive

• Given α, β ∈ Ω distinct, the orbital graph Γ with vertex set Ω
and directed edge set (α, β)G is connected

– If we forget the edge-direction then Γ is a Cayley–Abels
graph for G

– G ≤ Aut (Γ) and G acts transitively on Γ

– The ends of Γ do not depend on the choice of Γ

• G has 1 or 2ℵ0 ends

• Theorem (S., ’10) A primitive subdegree finite permutation
group with more than one end is not discrete
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Almost simple case
Now suppose G is closed, subdegree finite, primitive with 2ℵ0

ends

• Theorem (Möller, ’94): Γ can be chosen so that each vertex
is a cut vertex (i.e. removing any vertex leaves the graph
disconnected)

• Theorem (Jung & Watkins ’89, S. ’09) Γ has the form of a
lobe graph X (m,Λ) where the lobes Λ are primitive but are
not directed cycles, and Λ has at most one end

• Hence G ≤ Aut (X (m,Λ))

• Let H be the subgroup of Aut (Λ) induced by the setwise
stabilizer G{Λ}

• Then H is primitive but not regular and

• G is contained in H � Sm
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Classification of subdegree finite primitive permutation
groups

Theorem (S.) Suppose G ≤ Sym (Ω) is closed, infinite,
subdegree finite and primitive, then G satisfies:

• G is almost topologically simple with one end
(a) Almost simple and discrete
(b) Almost topologically simple and non-discrete

• G has 2ℵ0 ends and is contained in H � Sm, where m ≥ 2
and H is subdegree finite, primitive (possibly finite) but not
regular

• G is contained in H Wr Sym(m) with its product action,
where H is almost simple (or of box product type),
subdegree finite and primitive



Open questions and future work

Question 1a: Does there exist a simple, subdegree finite,
primitive permutation group that is non-discrete and has
precisely one end?

Question 1b: Does there exist a simple non-discrete tdlc
second countable group H which contains a compact open
(proper) subgroup U such that U is maximal in H and the
Cayley–Abels graph of (H,U) has precisely one end?

Question 2: In the box product case we write G ≤ H � Sm. But
H � Sm is huge; how “small” can G be?



preprint coming soon

thank you



Theorem (poss. attributable to W. Manning, early 20th C)

M Wr N acting on X Y with its product action is primitive ⇐⇒
• M is primitive and not regular and
• N is transitive and finite

Theorem (S., ’15)

M � N acting on VY is primitive ⇐⇒
• M is primitive and not regular and
• N is transitive
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Geometry

One can see the “shape” of a permutation group G ∈ Sym (Ω)
by looking at an orbital graph Γ.

Sym (3) � Sym (2) Sym (3) Wr Sym (2)



Topological properties
Suppose:
M ≤ Sym (X ) N ≤ Sym (Y ) M � N ≤ Sym (VY )
are given their permutation topologies, & M,N are closed.

Theorem (S.) The following are equivalent:
• every point stabiliser in M is compact and N is compact
• every point stabiliser in M � N is compact

Theorem (S.) Suppose M and N are transitive. If
• M is compactly generated and every point stabiliser is

compact and
• N is compact

then M � N is compactly generated and every point stabiliser is
compact

Theorem (S.) M � N is discrete ⇐⇒ M & N are semi-regular.
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