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Throughout: G < Sym () is transitive and Q2 is countably
infinite

The images of a € Q under G is the orbit of «, denoted o@

G is a Polish group

When studying infinite permutation groups, one typically wishes
to impose some kind of finiteness condition on G

E.g:
G has only finitely many orbits on Q" forall n e N
(Oligomorphic)

G,, has only finite orbits, for all « € Q
(Subdegree finite)



Subdegree finite permutation groups are the natural
permutation representations of tdic groups



Subdegree finite permutation groups are the natural
permutation representations of tdic groups

Suppose H is tdlc. By van Dantzig’'s theorem, H contains a
compact open subgroup U

Let Q2 be the set of cosets of U in H, then H acts
transitively on Q by multiplication

Think of Sym (Q2) as a topological group, where the basis of
the topology is all pointwise stabilizers of finite subsets of
Q

Let H / U denote the closure of the permutation group
induced by H acting on Q. Then H // U is subdegree finite

H // Uis called the Schlichting completion of the pair
(H, U) by Reid and Wesolek
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Suppose H < Sym () and me N

HWr S, has a product action on I'™:

Think of elements of HWr Sy, as (hy, ..., hy)o, where
each hje Hand o € S,

For (v1,...,vym) € '™ we have
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Suppose H < Sym () and me N

HWr S, has a product action on I'™:

Think of elements of HWr Sy, as (hy, ..., hy)o, where
each hje Hand o € S,

For (v1,...,vym) € '™ we have
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A1) Py 1 (m)
= (70—1(1) AR 7’70-—1(m))
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The box product

Suppose H < Sym (I') is transitive and m € N
Let A be a graph whose vertex set is I', such that H < Aut (A)

Let X(m, A) be the (infinite) graph such that every vertex x lies
in m copies of A, and these copies only intersect at x

The graph X(m, A) is called a lobe graph, and the copies of A
are called its lobes

The box product HX Sy, is the largest transitive subgroup of
Aut (X(m, A)) that induces H on each of the lobes
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An intuitive description of Cs X Cs
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Why is the box product important?

For permutation group theorists it is important because it is the
first product that preserves primitivity to have been discovered
in over a century

For topological group theory, the box product was used to
prove:

Theorem. (S., 2014) There are 2% pairwise non-isomorphic,
tdlc, compactly generated simple groups.

Moreover, these groups can be chosen so that they contain the
same compact open subgroup.
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Primitive permutation groups

A permutation group G < Sym (Q) is primitive if Q admits no
G-invariant equivalence relation except the trivial and universal
relations

How to think of imprimitive groups:

o,

Lo AT

All finite permutation groups can be decomposed into primitive
pieces



Finite primitive permutation groups

The structure of finite primitive permutation groups is known

O’Nan-Scott Theorem ('79). Every finite primitive permutation
group G is either:

Basic (affine, almost simple or diagonal)

Contained in HWr Sym(m) with its product action, where
H is basic

(or twisted wreath type)




Structure of subdegree finite primitive permutation
groups

Theorem (S.) Suppose G < Sym () is closed, infinite,
subdegree finite and primitive, then G is:

Almost topologically simple:

(a) Almost simple and discrete
(b) Almost topologically simple and non-discrete

Contained in HWr Sym(m) with its product action, where
H is almost simple, subdegree finite and primitive
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Theorem (S.) Suppose G < Sym (Q2) is closed, infinite,
subdegree finite and primitive, then G is:
Almost topologically simple:

(a) Almost simple and discrete
(b) Almost topologically simple and non-discrete

Contained in HWr Sym(m) with its product action, where
H is almost simple, subdegree finite and primitive

Note: affine, diagonal and twisted wreath product types do
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Almost topologically simple case

Many groups in this class exhibit a product structure (but not a
wreath product structure)

Suppose G is closed, subdegree-finite, primitive

Given a, 8 € Q distinct, the orbital graph I with vertex set Q
and directed edge set (a, 3)¢ is connected

If we forget the edge-direction then I is a Cayley—Abels
graph for G

G < Aut(I') and G acts transitively on

The ends of I do not depend on the choice of I'

G has 1 or 2% ends

Theorem (S., '10) A primitive subdegree finite permutation
group with more than one end is not discrete
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Almost simple case

Now suppose G is closed, subdegree finite, primitive with 2%
ends

Theorem (Mdller, '94): T can be chosen so that each vertex
is a cut vertex (i.e. removing any vertex leaves the graph
disconnected)

Theorem (Jung & Watkins '89, S. '09) I has the form of a
lobe graph X(m, A\) where the lobes A are primitive but are
not directed cycles, and A has at most one end

Hence G < Aut(X(m,N))

Let H be the subgroup of Aut (A) induced by the setwise
stabilizer Gia)

Then H is primitive but not regular and

G is contained in HX S,



Classification of subdegree finite primitive permutation
groups

Theorem (S.) Suppose G < Sym (Q) is closed, infinite,
subdegree finite and primitive, then G satisfies:

G is almost topologically simple with one end

(a) Almost simple and discrete

(b) Almost topologically simple and non-discrete

G has 2™ ends and is contained in HX S,,;,, where m > 2

and H is subdegree finite, primitive (possibly finite) but not

regular

G is contained in HWr Sym(m) with its product action,

where H is almost simple (or of box product type),
subdegree finite and primitive




Open questions and future work

Question 1a: Does there exist a simple, subdegree finite,
primitive permutation group that is non-discrete and has
precisely one end?

Question 1b: Does there exist a simple non-discrete tdic
second countable group H which contains a compact open
(proper) subgroup U such that U is maximal in H and the
Cayley—Abels graph of (H, U) has precisely one end?

Question 2: In the box product case we write G < HX S;,. But
HX S, is huge; how “small” can G be?



preprint coming soon

thank you
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Theorem (poss. attributable to W. Manning, early 20th C)

MWr N acting on XY with its product action is primitive <=
M is primitive and not regular and
N is transitive and finite

Theorem (S., '15)

M X N acting on Vy is primitive <
M is primitive and not regular and
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Geometry

One can see the “shape” of a permutation group G € Sym (Q2)
by looking at an orbital graph .

Sym (3) X Sym (2) Sym (3) Wr Sym (2)
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Theorem (S.) MX N is discrete < M & N are semi-regular. J




